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Review of PCA
• Primary uses:

– Analyze data and extract variables with similar concepts (principal 
components)

– Project the data onto a lower dimensional space
– Principal components which explain a greater amount of the variance are 

considered to be more important
• Accomplishes this by:

– Maximizing variance of the projected data x
– Represent matrix x in a different (q-dimensional) space using a set of 

orthonormal vectors W
• Weight matrix W is a d x q matrix that represents a re-mapping of original data y

into its “ideal” principal subspace, represented by x
• Each of q orthonormal columns of the weight matrix W, wi , represents a separate 

principal component
– Likelihood of a point in y is the distance2 between it and its reconstruction, Wx

Limitations of PCA
• Non-parametric

– no probabilistic model for observed data
• The variance-covariance matrix needs to be 

calculated
– Can be very computation-intensive for large datasets 

with a high # of dimensions
• Does not deal properly with missing data

– Incomplete data must either be discarded or imputed 
using ad-hoc methods

• Outlying data observations can unduly affect the 
analysis



Motivation behind probabilistic PCA

• Addresses limitations of regular PCA
• PCA can be used as a general Gaussian density model 

in addition to reducing dimensions
• Maximum-likelihood estimates can be computed for 

elements associated with principal components
• Captures dominant correlations with few parameters
• Multiple PCA models can be combined as a 

probabilistic mixture
• Can be used as a base for Bayesian PCA

Latent variable models

• Latent variable(s): unobserved variable (s)
– Offer a lower dimensional representation of the 

data and their dependencies 
• Latent variable model: 

– y: observed variables (d-dimensions)
– x: latent variables (q-dimensions)
– q<d

• Less dimensions results in more parsimonious 
models



Probabilistic PCA (PPCA)
• Latent variable model with linear relationship (factor analysis)

– y ~ Wx + µ + ε
– Latent variables: x ~ N(0, I)
– Error (or noise): ε ~ N(0, ψ)
– Location term (mean): µ

• Probabilistic PCA: Noise variances constrained to be equal 
(ψi=σ2)

• Error: ε ~ N(0, σ2I) (isotropic noise model)
– y|x ~ N(WX + µ, σ2I)
– y ~ N(µ, Cy), where Cy=WWT + σ2I (where Cy is the covariance matrix 

for the observed data y)
• Normal PCA is a limiting case of probabilistic PCA, taken as 

the limit as the covariance of the noise becomes infinitesimally
small (ψ =lim σ2 →0 σ2 I)

Illustration of probabilistic PCA

Observed variables (y) d = 7
(data)

Latent variables (x) q = 2
(hidden variables, underlying concepts) x ~ N(0, I)

Remapping: Wx
(Weight matrix: W)

y = Wx + µ + ε
y ~ N(µ, WWT + σ2I)

+
µ (location parameter)

+

Random error (noise): ε
ε ~ N(0, σ2I)

Parameters of interest: W (weight matrix), σ2 (variance of noise)



Illustration of probabilistic PCA

Observed variables (y) d = 7
(data)

Latent variables (x) q = 2
(hidden variables, underlying concepts)

Note: Observed variables 
become independent
of each other given latent 
factors

PPCA (Maximum likelihood PCA)
• Log-likelihood for Gaussian noise model:

– LL=-N/2 {d ln(2π) + ln|Cy| + tr(C-1
yS)}

• Cy=WWT + σ2

• Maximum likelihood estimates for above:
– µ: mean of the data
– S (sample covariance matrix of the observations Y):

• S =  (1/N) ∑(Yn - µ)(Yn – µ)T

• MLE’s for W and σ2 can be solved in two 
ways:
– closed form (Tipping and Bishop)
– EM algorithm (Roweis)

Tr(A) = sum of diagonal elements of A

N

n=1



MLE’s for probabilistic PCA 
(closed form)

• Likelihood of LL is maximized with respect to W and 
σ2, MLE’s can be obtained in closed form:
–

• Represents the variance lost in the projection, averaged over the # 
dim decreased

– WML = Uq ( Λq- σ2I)1/2 R
• Represents the mapping of the latent space (containing X) to that of 

the principal subspace (containing Y)
• Columns of Uq (d x q matrix): principal eigenvectors of S
• Λq (q x q diagonal matrix): corresponding eigenvalues λ1..q
• R: q x q arbitrary rotation matrix (can be set to R=I)

Derivation of MLEs
– LL = -N/2 {d ln(2π)+ln|Cy|+tr(C-1

yS)}
The 1st derivative of LL w/ respect to W:
– dL/dW =N(C-1SC-1W-C-1W), where W = ULVT =σ2I+WWT

– The stationary points are SC-1W = W.
– Non-trivial case: W ≠ 0, C ≠ S
– SVD: W = ULVT, U: d x q orthonormal vectors, L: q x q matrix of singular values, 

V: q x q orthogonal matrix,
• C-1W = W(σ2I+WTW)-1 = UL(σ2I + L2)-1VT

– At the stationary points:
• SUL(σ2I + L2)VT = ULVT

• SUL = U(σ2I + L2)L
– Column vectors of U, uj, are eigenvectors of S, with eigenvalue λj, such that σ2 + lj

2

= λj
• lj

2 = (λj - σ2) 1/2

– (substitute into SVD) W = Uq (Λ q - σ2I) R
• Uq : d x q with q column eigenvectors uj of S
• Λ j : λ1…λq, (q eigenvalues of uj), or σ2 (corresponding d-q “discarded” rows of W)
• R: arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or a re-

parametrization)



Derivation of MLEs (cont)

• Substitute above results into original LL 
expression

• LL = -N/2{d ln(2π) +∑ln(λj) + ∑λj + (d - q)ln σ2 + q}
• λ1…λq, are q non-zero eigenvalues of uj and λq+1…λd, are zero

• Taking derivative of above with respect to σ2 and 
solving for zero gives:

j=1

q

j=q+1

d

Differences between factor analysis and 
probabilistic PCA (PPCA)

• Covariance
– PPCA (and standard PCA) is covariant under rotation of 

the original data axes
– Factor analysis is covariant under component-wise 

rescaling

• Principal components (or factors)
– In PPCA: different principal components (axes) can be 

found incrementally
– Factor analysis: factors from a two-factor model may not 

correspond to those from a one-factor model



Dimensionality reduction and optimal 
reconstruction

• Using Bayes rule, we can obtain a posterior estimate 
of the latent variables
– x|y ~ N(M-1WT (y - µ), σ2M-1),

• where M = WTW + σ2I, M is a q x q matrix
– Cond. latent mean: E[x|y] = <xn|yn> = M-1WT (yn - µ)

• Reconstruction of the observed data with respect to 
the new subspace:
– The latent projection of regular PCA is skewed towards the 

origin (due to marginal distribution for x)
• yn = WML<xn|yn> + µ is not orthogonal and thus not optimal

– Optimal reconstruction of the observed data may still be 
obtained from conditional latent mean:

• yn = WML(WML
TWML)-1M <xn|yn> + µ

Motivation behind using E-M for 
PCA

• Naive PCA and MLE PCA computation-heavy for 
high dimensional data or large data sets

• PCA does not deal properly with missing data
– E-M algorithm estimates ML values of missing data at each 

iteration

• Naïve PCA uses simplistic way (distance2 from 
observed data) to access covariance
– Sensible PCA (SPCA) defines a proper covariance 

structure whose parameters can be estimated through the E-
M algorithm



E-M algorithm (review)
• Iterative process to estimate parameters consisting of 

two steps for each iteration
– Expectation (data step): complete all hidden and missing 

variables Θ (or latent variables) from current set of 
parameters 

– Maximization (likelihood step): Update set of parameters 
Θ`, using MLE, from complete set of data from previous 
step

• Likelihood obtained from MLEs guaranteed to 
improve in successive iterations

• Continue iterations until negligible improvement is 
found in likelihood

E-M algorithm for normal PCA
• Amounts to an iterative procedure for finding 

subspace spanned by the q leading eigenvectors 
without computing covariance

• E-step: X = (WTW)-1WTY
– Fix subspace and project data, y, into it to give values of 

hidden states x
– Known: Y: d-dimensional observed data
– Unknown (latent): X: q-dimensional unknown states

• M-step: Wnew = YXT(XXT)-1

– Fix values of hidden states and choose subspace orientation 
that minimizes squared reconstruction errors



E-M algorithm and missing data
• Data with missing obs filled out: x, Complete data (with 

blanks not filled out): y
E-step (fill in missing variables):
• If data point y is complete, then y*=y and x* is found as usual
• If the data point y is not complete, x* and y* are the solution to 

the least squares problem. Compute x by projecting the 
observed data y into the current subspace.
– For each (possibly incomplete) point y, find the unique pair of points 

(x*,y*) that minimize the norm ||Wx*-y*||. 
– Constrain x* to be in the current principal subspace and y* in the 

subspace defined by known info about y
• If y can be completely solved in system of equations, set corresponding 

column of X to x* and the corresponding column of Y to y*
• Otherwise, QR factorization can be used on a particular constraint matrix 

to find least squares solution

E-M algorithm and missing data
(E-step)
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Set x = (-1, 4), y = (3, 1, 2), proceed to M-step

If two elements are missing in Y, then we use QR factorization to find the pair (x*, y*) 
with the least squares of the norm ||Wx*-y*||, according to the constraints specified in 
the set of equations Wx = y.



EM for probabilistic PCA
(Sensible Principal Component 

Analysis)
• Probabilistic PCA model:

– Y ~ N(µ, WWT + σ2I)
• Similar to normal PCA model, the differences are:

– We do not take the limit as σ2 approaches 0
– During E-M iterations, data can be directly generated from the SPCA 

model, and the likelihood estimated from the test data set
– Likelihood much lower for data far away from the training set, even if 

they are near the principal subspace
• EM algorithm steps implemented as follows:

– E: β = WT(WWT + σ2I)-1, <xn|yn> = β(Y - µ), Σx = nI - nβW + <xn|yn><xn|yn>T

• Log-likelihood in terms of weight matrix W, and a centered observed data matrix Y- µ, 
noise covariance σ2I, and conditional latent mean <xn|yn>

– M: Wnew = (Y - µ) <xn|yn>T Σx
-1,σ2 new = trace[XXT - W<xn|yn>(Y- µ)T]/n2

• Differentiate LL in terms of W and σ2 and set to zero.

Advantages of using E-M algorithm in 
probabilistic PCA models

• Convergence:
– Tipping and Bishop showed (1997) that the only stable 

local extremum is the global maximum at which the 
true principal subspace is found

• Complexity:
– Methods that explicitly compute the sample covariance 

matrix have complexities O(nd2)
– E-M algorithm does not require computation of sample 

covariance matrix, O(dnq)
• Huge advantage when q << d (# of principal components is 

much smaller than original # of variabes)



E-M algorithm for PPCA 
(illustration)

Standard PCA (on 
complete data)

Probabilistic PCA (using 
EM algorithm) with 20% 

(136) missing values

Example: 38 observations (with 18 data points each) from Tobamovirus
data set (Ripley, 1996)

3 clusters

Other methods for PCA
• Power iteration methods

– Iteratively update eigenvector estimates through repeated 
multiplication by matrix to be diagonalized

– Extremely inefficient to calculate explicitly (O(nq2))
– E-M algorithm provides efficient way to obtain sample 

covariance matrix, without explicitly calculating it
– Iterative methods to compute SVD are closely related to the 

E-M algorithm
• Learning methods for the principal subspace

– Sanger’s and Oja’s rule
– Typically require more iterations and the learning 

parameter to be set by hand



Mixtures of probabilistic PCAs
• A combination of local probabilistic PCA models
• Multiple plots may reveal more complex data 

structures than a PCA projection alone
• Applications:

– Image compression (Dony and Haykin 1995)
– Visualization (Bishop and Tipping, 1998)

• Clustering mechanisms of mixture PPCA:
– Local linear dimensionality reduction
– Semi-parametric density estimation

Mixtures of probabilistic PCAs

– LL = ∑ ln{p(yn)} = ∑ ln {∑πi p(yn|i)}
• p(y|i) is a single PPCA model and πi is the 

corresponding mixing proportion
• Different mean vectors µi, weighting matricesWi , and 

noise error parameters σi
2 for each of M probabilistic 

PCA models

– An iterative E-M algorithm can be used to solve 
for parameters

– Guaranteed to find a local maximum of the log-
likelihood

n=1

N

i=1

M

n=1

N


