Probabilistic Principal Component Analysis and the E-M algorithm

The Minh Luong

CS 3750
October 23, 2007

Outline

- Probabilistic Principal Component Analysis
- Latent variable models
- Probabilistic PCA
- Formulation of PCA model
- Maximum likelihood estimation
- Closed form solution
- EM algorithm
» EM Algorithms for regular PCA
» Sensible PCA (E-M algorithm for probabilistic PCA)
- Mixtures of Probabilistic Principal Component Analysers

Review of PCA

- Primary uses:
- Analyze data and extract variables with similar concepts (principal components)
- Project the data onto a lower dimensional space
- Principal components which explain a greater amount of the variance are considered to be more important
- Accomplishes this by:
- Maximizing variance of the projected data \boldsymbol{x}
- Represent matrix \boldsymbol{x} in a different (q-dimensional) space using a set of orthonormal vectors \boldsymbol{W}
- Weight matrix \boldsymbol{W} is a $d x q$ matrix that represents a re-mapping of original data \boldsymbol{y} into its "ideal" principal subspace, represented by \boldsymbol{x}
- Each of q orthonormal columns of the weight matrix $\boldsymbol{W}, \boldsymbol{w}_{\boldsymbol{i}}$, represents a separate principal component
- Likelihood of a point in \boldsymbol{y} is the distance ${ }^{2}$ between it and its reconstruction, $\boldsymbol{W} \boldsymbol{x}$

Limitations of PCA

- Non-parametric
- no probabilistic model for observed data
- The variance-covariance matrix needs to be calculated
- Can be very computation-intensive for large datasets with a high \# of dimensions
- Does not deal properly with missing data
- Incomplete data must either be discarded or imputed using ad-hoc methods
- Outlying data observations can unduly affect the analysis

Motivation behind probabilistic PCA

- Addresses limitations of regular PCA
- PCA can be used as a general Gaussian density model in addition to reducing dimensions
- Maximum-likelihood estimates can be computed for elements associated with principal components
- Captures dominant correlations with few parameters
- Multiple PCA models can be combined as a probabilistic mixture
- Can be used as a base for Bayesian PCA

Latent variable models

- Latent variable(s): unobserved variable (s)
- Offer a lower dimensional representation of the data and their dependencies
- Latent variable model:
$-\boldsymbol{y}$: observed variables (d-dimensions)
$-\boldsymbol{x}$: latent variables (q-dimensions)
- $q<d$
- Less dimensions results in more parsimonious models

Probabilistic PCA (PPCA)

- Latent variable model with linear relationship (factor analysis)
$-\boldsymbol{y} \sim \boldsymbol{W x}+\boldsymbol{\mu}+\boldsymbol{\varepsilon}$
- Latent variables: $x \sim N(0, I)$
- Error (or noise): $\boldsymbol{\varepsilon} \sim \boldsymbol{N}(\mathbf{0}, \boldsymbol{\Psi})$
- Location term (mean): $\boldsymbol{\mu}$
- Probabilistic PCA: Noise variances constrained to be equal ($\psi_{i}=\sigma^{2}$)
- Error: $\boldsymbol{\varepsilon} \sim N\left(0, \sigma^{2} I\right)$ (isotropic noise model)
- $\boldsymbol{y} \mid \boldsymbol{x} \sim N\left(\boldsymbol{W} X+\mu, \sigma^{2} I\right)$
$-\boldsymbol{y} \sim \boldsymbol{N}\left(\boldsymbol{\mu}, \boldsymbol{C}_{y}\right)$, where $\boldsymbol{C}_{\boldsymbol{y}}=\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\sigma^{2} \boldsymbol{I}$ (where $\boldsymbol{C}_{\boldsymbol{y}}$ is the covariance matrix for the observed data \boldsymbol{y})
- Normal PCA is a limiting case of probabilistic PCA, taken as the limit as the covariance of the noise becomes infinitesimally $\operatorname{small}\left(\boldsymbol{\Psi}=\lim _{\sigma 2 \rightarrow 0} \sigma^{2} \boldsymbol{I}\right)$

Illustration of probabilistic PCA

Latent variables (x) q=2
(hidden variables, underlying concepts)
$x \sim N(0, I)$

μ (location parameter)
Random error (noise): ε
$\varepsilon \sim N\left(0, \sigma^{2}\right.$ I)
Observed variables (y) d=7 (data)

$$
\begin{aligned}
& y=W x+\mu+\varepsilon \\
& y \sim N\left(\mu, W W^{T}+\sigma^{2} I\right)
\end{aligned}
$$

Parameters of interest: W (weight matrix), σ^{2} (variance of noise)

Illustration of probabilistic PCA

Latent variables (x) $q=2$
(hidden variables, underlying concepts)

Note: Observed variables become independent of each other given latent factors

Observed variables (y) d=7 (data)

PPCA (Maximum likelihood PCA)

- Log-likelihood for Gaussian noise model:
$-L L=-N / 2\left\{d \ln (2 \pi)+\ln \left|\mathbf{C}_{\boldsymbol{y}}\right|+\operatorname{tr}\left(\boldsymbol{C}^{-1}, \boldsymbol{S}\right)\right\}$
- $\boldsymbol{C}_{\boldsymbol{y}}=\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\boldsymbol{\sigma}^{2}$
- Maximum likelihood estimates for above:
$-\mu$: mean of the data
- \boldsymbol{S} (sample covariance matrix of the observations \boldsymbol{Y}):

$$
\text { - } S=(I / N) \sum_{n=1}^{N}\left(Y_{n}-\mu\right)\left(Y_{n}-\mu\right)^{T}
$$

- MLE's for \boldsymbol{W} and $\boldsymbol{\sigma}^{2}$ can be solved in two ways:
- closed form (Tipping and Bishop)
- EM algorithm (Roweis)
$\operatorname{Tr}(A)=$ sum of diagonal elements of A

MLE's for probabilistic PCA (closed form)

- Likelihood of LL is maximized with respect to \boldsymbol{W} and $\boldsymbol{\sigma}^{2}$, MLE's can be obtained in closed form:
- $\sigma_{\mathrm{ML}}^{2}=\frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_{j}$
- Represents the variance lost in the projection, averaged over the \# dim decreased
$-W_{M L}=U_{q}\left(\Lambda_{q}-\sigma^{2} I\right)^{1 / 2} R$
- Represents the mapping of the latent space (containing \boldsymbol{X}) to that of the principal subspace (containing \boldsymbol{Y})
- Columns of $\boldsymbol{U}_{q}(d x q$ matrix): principal eigenvectors of \mathbf{S}
- $\boldsymbol{\Lambda}_{q}(q \times q$ diagonal matrix $)$: corresponding eigenvalues $\boldsymbol{\Lambda}_{\text {I.. }}$
- $\boldsymbol{R}: q \times q$ arbitrary rotation matrix (can be set to $\mathrm{R}=\mathrm{I}$)

Derivation of MLEs

- $L L=-N / 2\left\{d \ln (2 \pi)+\ln \left|\mathbf{C}_{\boldsymbol{y}}\right|+\operatorname{tr}\left(\boldsymbol{C}^{-1}, \boldsymbol{S} \boldsymbol{S}\right)\right\}$

The $1^{\text {st }}$ derivative of $L L \mathrm{w} /$ respect to \boldsymbol{W} :

- $\mathrm{dL} / \mathrm{dW}=\mathrm{N}\left(\boldsymbol{C}^{-1} \boldsymbol{S} \boldsymbol{C}^{-1} \boldsymbol{W}-\boldsymbol{C}^{-1} \boldsymbol{W}\right)$, where $\boldsymbol{W}=\boldsymbol{U} \boldsymbol{L} \boldsymbol{V}^{\boldsymbol{T}}=\sigma^{2} \mathbf{I}+\boldsymbol{W} \boldsymbol{W}^{T}$
- The stationary points are $\boldsymbol{S C ^ { - 1 }} \boldsymbol{W}=\boldsymbol{W}$.
- Non-trivial case: $\boldsymbol{W} \neq \mathbf{0}, \boldsymbol{C} \neq \boldsymbol{S}$
- SVD: $\boldsymbol{W}=\boldsymbol{U L} \boldsymbol{V}^{\boldsymbol{T}}, \boldsymbol{U}: d x q$ orthonormal vectors, $\boldsymbol{L}: q \times q$ matrix of singular values, $V: q \times q$ orthogonal matrix,
- $\boldsymbol{C}^{-1} \boldsymbol{W}=\boldsymbol{W}\left(\sigma^{2} \boldsymbol{I}+\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1}=\boldsymbol{U} \boldsymbol{L}\left(\sigma^{2} I+\boldsymbol{L}^{2}\right)^{-1} \boldsymbol{V}^{\boldsymbol{T}}$
- At the stationary points:
- $\operatorname{SUL}\left(\sigma^{2} I+L^{2}\right) V^{T}=U L V^{T}$
- $S U L=U\left(\sigma^{2} I+L^{2}\right) L$
- Column vectors of $\boldsymbol{U}, \boldsymbol{u}_{\boldsymbol{j}}$, are eigenvectors of \boldsymbol{S}, with eigenvalue λ_{j}, such that $\sigma^{2}+l_{j}^{2}$
$=\lambda_{j}$
- $l_{j}{ }^{2}=\left(\lambda_{j}-\sigma^{2}\right)^{1 / 2}$
$-\quad$ (substitute into SVD$) \boldsymbol{W}=\boldsymbol{U}_{q}\left(\boldsymbol{\Lambda}_{q}-\sigma^{2} I\right) \boldsymbol{R}$
- $\boldsymbol{U}_{\boldsymbol{q}}: d x q$ with q column eigenvectors $\boldsymbol{u}_{\boldsymbol{j}}$ of \boldsymbol{S}
- $\boldsymbol{\Lambda}_{j}: \lambda_{1} \ldots \lambda_{\boldsymbol{q}},\left(q\right.$ eigenvalues of $\left.\boldsymbol{u}_{j}\right)$, or $\boldsymbol{\sigma}^{2}$ (corresponding d - q "discarded" rows of \boldsymbol{W})
- \boldsymbol{R} : arbitrary orthogonal matrix, equivalent to a rotation in principal subspace (or a reparametrization)

Derivation of MLEs (cont)

- Substitute above results into original $L L$ expression
- $L L=-N / 2\left\{d \ln (2 \pi)+\sum_{i=1}^{s} \ln \left(\lambda_{j}\right)+\sum_{j=q+1}^{d} \lambda_{j}+(\mathrm{d}-\mathrm{q}) \ln \sigma^{2}+\mathrm{q}\right\}$ - $\lambda_{I} \ldots \lambda_{q}$, are q non-zero eigenvalues of \boldsymbol{u}_{j} and $\lambda_{q+1} \ldots \lambda_{d}$, are zero
- Taking derivative of above with respect to σ^{2} and solving for zero gives:

$$
\sigma_{\mathrm{ML}}^{2}=\frac{1}{d-q} \sum_{j=q+1}^{d} \lambda_{j}
$$

Differences between factor analysis and probabilistic PCA (PPCA)

- Covariance
- PPCA (and standard PCA) is covariant under rotation of the original data axes
- Factor analysis is covariant under component-wise rescaling
- Principal components (or factors)
- In PPCA: different principal components (axes) can be found incrementally
- Factor analysis: factors from a two-factor model may not correspond to those from a one-factor model

Dimensionality reduction and optimal reconstruction

- Using Bayes rule, we can obtain a posterior estimate of the latent variables
$-x \mid y \sim N\left(M^{-1} W^{T}(y-\mu), \sigma^{2} M^{-1}\right)$,
- where $\boldsymbol{M}=\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{W}+\sigma^{2} \boldsymbol{I}, \boldsymbol{M}$ is a $q \times q$ matrix
- Cond. latent mean: $E[x \mid y]=<x_{n} \mid y_{n}>=M^{-1} \boldsymbol{W}^{T}\left(y_{\mathrm{n}}-\mu\right)$
- Reconstruction of the observed data with respect to the new subspace:
- The latent projection of regular PCA is skewed towards the origin (due to marginal distribution for \boldsymbol{x})
- $\mathbf{y}_{\mathrm{n}}=\boldsymbol{W}_{\boldsymbol{M L}}<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>+\mu$ is not orthogonal and thus not optimal
- Optimal reconstruction of the observed data may still be obtained from conditional latent mean:
- $\mathbf{y}_{\mathrm{n}}=\mathbf{W}_{\mathbf{M L}}\left(\mathbf{W}_{\mathbf{M L}}{ }^{\mathrm{T}} \mathbf{W}_{\mathbf{M L}}\right)^{-1} \mathbf{M}<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>+\boldsymbol{\mu}$

Motivation behind using E-M for PCA

- Naive PCA and MLE PCA computation-heavy for high dimensional data or large data sets
- PCA does not deal properly with missing data
- E-M algorithm estimates ML values of missing data at each iteration
- Naïve PCA uses simplistic way (distance ${ }^{2}$ from observed data) to access covariance
- Sensible PCA (SPCA) defines a proper covariance structure whose parameters can be estimated through the EM algorithm

E-M algorithm (review)

- Iterative process to estimate parameters consisting of two steps for each iteration
- Expectation (data step): complete all hidden and missing variables $\boldsymbol{\Theta}$ (or latent variables) from current set of parameters
- Maximization (likelihood step): Update set of parameters $\boldsymbol{\Theta}^{\prime}$, using MLE, from complete set of data from previous step
- Likelihood obtained from MLEs guaranteed to improve in successive iterations
- Continue iterations until negligible improvement is found in likelihood

E-M algorithm for normal PCA

- Amounts to an iterative procedure for finding subspace spanned by the q leading eigenvectors without computing covariance
- E-step: $\boldsymbol{X}=\left(\boldsymbol{W}^{T} \boldsymbol{W}\right)^{-1} \boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{Y}$
- Fix subspace and project data, \boldsymbol{y}, into it to give values of hidden states \boldsymbol{x}
- Known: $\boldsymbol{Y}: d$-dimensional observed data
- Unknown (latent): $\boldsymbol{X}: q$-dimensional unknown states
- M-step: $\mathrm{W}_{\text {new }}=\boldsymbol{Y} \boldsymbol{X}^{\boldsymbol{T}}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)^{-1}$
- Fix values of hidden states and choose subspace orientation that minimizes squared reconstruction errors

E-M algorithm and missing data

- Data with missing obs filled out: \boldsymbol{x}, Complete data (with blanks not filled out): \boldsymbol{y}
E-step (fill in missing variables):
- If data point \boldsymbol{y} is complete, then $\boldsymbol{y}^{*}=\boldsymbol{y}$ and \boldsymbol{x}^{*} is found as usual
- If the data point \boldsymbol{y} is not complete, \boldsymbol{x}^{*} and \boldsymbol{y}^{*} are the solution to the least squares problem. Compute \boldsymbol{x} by projecting the observed data y into the current subspace.
- For each (possibly incomplete) point \boldsymbol{y}, find the unique pair of points ($\mathbf{x}^{*}, \mathbf{y}^{*}$) that minimize the norm $\left\|\boldsymbol{W} \boldsymbol{x}^{*}-\boldsymbol{y}^{*}\right\|$.
- Constrain x^{*} to be in the current principal subspace and y^{*} in the subspace defined by known info about \boldsymbol{y}
- If \boldsymbol{y} can be completely solved in system of equations, set corresponding column of \boldsymbol{X} to \boldsymbol{x} * and the corresponding column of \boldsymbol{Y} to \boldsymbol{y}^{*}
- Otherwise, QR factorization can be used on a particular constraint matrix to find least squares solution

$$
\begin{aligned}
& \text { E-M algorithm and missing data } \\
& \text { (E-step) } \\
& \boldsymbol{W}=\left(\begin{array}{cc}
1 & 1 \\
1 & 0.5 \\
2 & 1
\end{array}\right) \quad \boldsymbol{X}=\left(\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right] \quad \boldsymbol{Y}=\left(\begin{array}{l}
3 \\
1 \\
?
\end{array}\right)
\end{aligned}
$$

Set $\boldsymbol{x}=(-1,4), \boldsymbol{y}=(3,1,2)$, proceed to M-step
If two elements are missing in \boldsymbol{Y}, then we use QR factorization to find the pair ($\mathrm{x}^{*}, \mathrm{y}^{*}$) with the least squares of the norm $\left\|W^{*}-y^{*}\right\|$, according to the constraints specified in the set of equations $\boldsymbol{W x}=\boldsymbol{y}$.

EM for probabilistic PCA (Sensible Principal Component Analysis)

- Probabilistic PCA model:
$-\boldsymbol{Y} \sim N\left(\mu, \boldsymbol{W} \boldsymbol{W}^{T}+\sigma^{2} \boldsymbol{I}\right)$
- Similar to normal PCA model, the differences are:
- We do not take the limit as σ^{2} approaches 0
- During E-M iterations, data can be directly generated from the SPCA model, and the likelihood estimated from the test data set
- Likelihood much lower for data far away from the training set, even if they are near the principal subspace
- EM algorithm steps implemented as follows:
$-\mathrm{E}: \boldsymbol{\beta}=\boldsymbol{W}^{\boldsymbol{T}}\left(\boldsymbol{W} \boldsymbol{W}^{\boldsymbol{T}}+\boldsymbol{\sigma}^{2} \boldsymbol{I}\right)^{-1},<\mathrm{x}_{\mathrm{n}}\left|\mathrm{y}_{\mathrm{n}}>=\boldsymbol{\beta}(\boldsymbol{Y}-\boldsymbol{\mu}), \boldsymbol{\Sigma}_{\boldsymbol{x}}=n \boldsymbol{I}-n \boldsymbol{\beta} \boldsymbol{W}+<\mathrm{x}_{\mathrm{n}}\right| \mathrm{y}_{\mathrm{n}}><\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>T$
- Log-likelihood in terms of weight matrix \boldsymbol{W}, and a centered observed data matrix $\boldsymbol{Y}-\boldsymbol{\mu}$, noise covariance $\sigma^{2} \boldsymbol{I}$, and conditional latent mean $<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>$
$-\mathrm{M}: \boldsymbol{W}^{\text {new }}=(\boldsymbol{Y}-\mu)<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>\boldsymbol{T} \boldsymbol{\Sigma}_{\boldsymbol{x}}^{-1}, \sigma^{2 \text { new }}=$ trace $\left[\boldsymbol{X} \boldsymbol{X}^{T}-\boldsymbol{W}<\mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{\mathrm{n}}>(\boldsymbol{Y}-\mu)^{T}\right] / n^{2}$
- Differentiate LL in terms of \boldsymbol{W} and σ^{2} and set to zero.

Advantages of using E-M algorithm in probabilistic PCA models

- Convergence:
- Tipping and Bishop showed (1997) that the only stable local extremum is the global maximum at which the true principal subspace is found
- Complexity:
- Methods that explicitly compute the sample covariance matrix have complexities $O\left(n d^{2}\right)$
- E-M algorithm does not require computation of sample covariance matrix, O (dnq)
- Huge advantage when $q \ll d$ (\# of principal components is much smaller than original \# of variabes)

E-M algorithm for PPCA (illustration)

Example: 38 observations (with 18 data points each) from Tobamovirus data set (Ripley, 1996)

Standard PCA (on complete data)

Probabilistic PCA (using EM algorithm) with 20\% (136) missing values

3 clusters

Other methods for PCA

- Power iteration methods
- Iteratively update eigenvector estimates through repeated multiplication by matrix to be diagonalized
- Extremely inefficient to calculate explicitly ($O\left(n q^{2}\right)$)
- E-M algorithm provides efficient way to obtain sample covariance matrix, without explicitly calculating it
- Iterative methods to compute SVD are closely related to the E-M algorithm
- Learning methods for the principal subspace
- Sanger's and Oja's rule
- Typically require more iterations and the learning parameter to be set by hand

Mixtures of probabilistic PCAs

- A combination of local probabilistic PCA models
- Multiple plots may reveal more complex data structures than a PCA projection alone
- Applications:
- Image compression (Dony and Haykin 1995)
- Visualization (Bishop and Tipping, 1998)
- Clustering mechanisms of mixture PPCA:
- Local linear dimensionality reduction
- Semi-parametric density estimation

Mixtures of probabilistic PCAs

$-\mathrm{LL}=\sum_{\mathrm{n}=1}^{\mathrm{N}} \ln \left\{p\left(\boldsymbol{y}_{\boldsymbol{n}}\right)\right\}=\sum_{\mathrm{n}=1}^{\mathrm{N}} \ln \left\{\sum_{i=1}^{\mathrm{M}} \boldsymbol{\pi}_{i} p\left(\boldsymbol{y}_{\boldsymbol{n}} \mid i\right)\right\}$

- $p(\boldsymbol{y} \mid i)$ is a single PPCA model and $\boldsymbol{\pi}_{i}$ is the corresponding mixing proportion
- Different mean vectors μ_{i}, weighting matrices \boldsymbol{W}_{i}, and noise error parameters $\sigma_{i}{ }^{2}$ for each of M probabilistic PCA models
- An iterative E-M algorithm can be used to solve for parameters
- Guaranteed to find a local maximum of the loglikelihood

