Applications of SVD and PCA
(LSA and Link analysis)

Cem Akkaya

Outline

- SVD and LSI
- Kleinberg’s Algorithm
- PageRank Algorithm
Vector Space Model

- Vector space model represents database as a vector space
 - each document is represented as a vector. Each component and its weight of the vector represents an indexing term and its semantical importance in the document respectively
 - queries are modeled as vectors
 - a database containing a total of d documents described by t terms is represented as a $t \times d$ term-by-document matrix
 - the semantic content of the database is wholly contained in the column space of A

Example

Terms ($t=6$): Documents titles ($d=5$):
T1:bak(e,ing) D1: How to bake bread without recipes
T2:recipes D2: The classic art of Viennese pastry
T3:bread D3: Numerical recipes: The art of scientific computing
T4:cake D4: Breads, pastries, pies and cakes: quantity baking recipes
T6:pie

$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

$\hat{A} = \begin{pmatrix} 0.5774 & 0 & 0 & 0.4082 & 0 \\ 0.5774 & 0 & 1 & 0.4082 & 0.7071 \\ 0.5774 & 0 & 0 & 0.4082 & 0 \\ 0 & 0 & 0 & 0.4082 & 0 \\ 0 & 1 & 0 & 0.4082 & 0.7071 \\ 0 & 0 & 0 & 0.4082 & 0 \end{pmatrix}$

6 x 5 term-by-document matrix

Normalized 6 x 5 term-by-document matrix with unit columns
Similarity Measure

- Relevant documents are identified by simple vector operations
- Using spatial proximity for semantic proximity
- Most relevant documents for a query are expected to be those represented by the vectors closest to the query
- Cosine measure is the most widespread similarity measure. It gives the cosine of the angle between two vectors.
- If we work on unit vectors, cosine measure becomes just a simple dot product

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}$$

Example

- A vector space with two dimensions. The two dimensions correspond to terms car and insurance
- Three documents and one query are represented as unit vectors
- D2 is the most similar document to query q, because it has the smallest angle with q
Term weighting

- Simplest term (vector component) weightings are:
 - count of number of times word occurs in document
 - binary: word does or doesn’t occur in document
- However, general experience is that a document is a better match if a word occurs three times than once, but not a three times better match.
- This leads to a series of weighting functions
 - e.g., \(1+\log(x)\) if \(x > 0\) else \(\text{sqrt}(x)\)
- That doesn’t capture that the occurrence of a term in a document is more important if that term does not occur in many other documents.
 - Solution: weight=global weight x local weight

Problems

- The vector space representation suffers, from its inability to address two classic problems “synonymy” and “polysemy”.
 - synonymy refers to a case where two different words (say car and automobile) have the same meaning.
 - polysemy on the other hand refers to the case where a term such as charge has multiple meanings
- Synonym causes to underestimate true similarity
 - q(car) document(car,automobile). Car and Automobile reside on separate dimensions in the vector space. Thus the similarity measure underestimates the true similarity
- Polysemy causes to overestimate true similarity
 - q(charge) document(charge). Charge has multiple meanings. Thus the similarity measure overestimates the true similarity
- Solution: LSI
 - could we use the co-occurrences of terms to capture the latent semantic associations of terms?
Latent Semantic Indexing (LSI)

- Approach: Treat token-to-document association data as an unreliable estimate of a larger set of applicable words lying on 'latent' dimensions.
- Goal: Cluster similar documents which may share no terms in the latent semantic space, which is a low-dimensional subspace. (improves recall)
- LSI projects queries and documents into a space with latent semantic dimensions.
 - co-occurring words are projected on the same dimensions
 - non-co-occurring words are projected onto different dimensions
- Thus, LSI can be described as a method for dimensionality reduction
- In the latent semantic space a query and a document can have high cosine similarity even if they do not share any terms, as long as their terms are semantically related (according to co-occurrence)

Moreover, dimensions of the reduced semantic space correspond to the axes of greatest variation in the original space (closely related to PCA)

LSI is accomplished by an algebraic technique, called Singular Value Decomposition (SVD), to term-by-document matrix

Steps:
- preprocessing: Compute optimal low-rank approximation (latent semantic space) to the original term-by-document matrix with help of SVD
- evaluation: Rank similarity of terms and docs to query in the latent semantic space via a usual similarity measure
- Optimality dictates that the projection into the latent semantic space should be changed as little as possible measured by the sum of the squares of differences
Example

\[A = \begin{pmatrix}
 d1 & d2 & d3 & d4 & d5 & d6 \\
 cosmonaut & 1 & 0 & 1 & 0 & 0 \\
 astronaut & 0 & 1 & 0 & 0 & 0 \\
 moon & 1 & 1 & 0 & 0 & 0 \\
 car & 1 & 0 & 0 & 1 & 1 \\
 truck & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix} \]

- A is a term-by-document matrix with rank 5
- In the next figure, the original five dimensional space is reduced to two dimensions (latent dimensions, concepts)
- In the original space the relation between d2 and d3 (space exploration documents) is not clear
- In the reduced latent semantic space it is easy to see that they are closely related
- How we reduce to two dimensions will be shown along SVD

Singular Value Decomposition (SVD)

- Co-occurrence analysis and dimensionality reduction are two functional ways to understand LSI.
- It is done by the application of SVD projection
- SVD decomposes \(A_{td} \) into the product of three matrices \(T_{tn} \), \(S_{nn} \) and \(D_{dn} \)

\[
A_{td} = T_{tn} S_{nn} (D_{dn})^T
\]

\[
\begin{pmatrix}
 o & o & o \\
 o & o & o \\
 o & o & o \\
 o & o & o \\
\end{pmatrix}
\begin{pmatrix}
 o & o & o \\
 o & o & o \\
 o & o & o \\
 o & o & o \\
\end{pmatrix}
\begin{pmatrix}
 o & o & o \\
 o & o & o \\
 o & o & o \\
\end{pmatrix}
\begin{pmatrix}
 o & o & o \\
\end{pmatrix}
\]
Singular Value Decomposition (SVD)

- T and D matrices have orthonormal columns. (they are unit vectors and orthogonal to each other)
- S is a diagonal matrix containing singular values of A in descending order. The number of non-zero singular values gives the rank of A
- Columns of T are the orthogonal eigenvectors of AA^T
- Columns of D are the orthogonal eigenvectors of A^TA
- LSI defines:
 - A as term-by-document matrix
 - T as term-to-concept similarity matrix
 - S as concept strengths
 - D as concept-to-doc similarity matrix
- If rank of A is smaller than term count, we can directly project into a reduced dimensionality space. However, we may also want to reduce the dimensionality of A by setting small singular values of S to zero.

Dimensionality Reduction

- SVD finds the optimal projection to a low-dimensional space (in the case of LSI, it’s the latent semantic space)
- Compute SVD of $A_{td} = T_{tx}S_{xn}(D_{xn})^T$
- Form $A^\wedge_{tk} = T_{tx}S_{tk}(D_{kn})^T$ by replacing the $r - k$ smallest singular values on the diagonal by zeros, which is the optimal reduced rank-k approximation of A_{td}
- $B^\wedge_{tk} = S_{tk}(D_{kn})^T$ builds the projection of documents from the original space to the reduced rank-k approximation
 - in the original space, n dimensions correspond to terms
 - in the new reduced space, k dimensions correspond to concepts
- $Q_k = (T_{tk})^TQ_k$ builds the projection of the query from the original space to the reduced rank-k approximation
- Then we can rank similarity of documents to query in the reduced latent semantic space via a usual similarity measure
- That process is called LSI. It achieves higher recall than standard vector space search
Example-SVD

$$A = \begin{pmatrix}
\text{cos monaut} & 1 & 0 & 1 & 0 & 0 \\
\text{astronaut} & 0 & 1 & 0 & 0 & 0 \\
\text{moon} & 1 & 1 & 0 & 0 & 0 \\
\text{car} & 1 & 0 & 0 & 1 & 1 \\
\text{truck} & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
$$

$$T = \begin{pmatrix}
d1 & d2 & d3 & d4 & d5 & d6 \\
cos monaut & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\
astronaut & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\
moon & -0.48 & -0.51 & -0.37 & 0.00 & -0.61 \\
car & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\
truck & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \\
\end{pmatrix}
$$

$$D^T = \begin{pmatrix}
d1 & d2 & d3 & d4 & d5 & d6 \\
dim1 & -0.75 & -0.28 & -0.20 & -0.44 & -0.33 & -0.12 \\
dim2 & -0.29 & -0.53 & -0.19 & 0.65 & 0.22 & 0.41 \\
dim3 & 0 & 0 & 0 & 0 & 0 & 0 \\
dim4 & 0 & 0 & 0 & 0 & 0 & 0 \\
dim5 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

$$S = \begin{pmatrix}
2.16 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 \\
0 & 0 & 0 & 1.00 & 0 \\
0 & 0 & 0 & 0 & 0.39 \\
\end{pmatrix}
$$

Example-Reduction (rank-2 approx.)

$$S' = \begin{pmatrix}
2.16 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 \\
0 & 0 & 0 & 1.00 & 0 \\
0 & 0 & 0 & 0 & 0.39 \\
\end{pmatrix}
$$

$$T' = \begin{pmatrix}
d1 & d2 & d3 & d4 & d5 & d6 \\
cos monaut & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\
astronaut & -0.13 & -0.33 & -0.59 & 0.00 & 0.73 \\
moon & -0.48 & -0.51 & -0.37 & 0.00 & -0.61 \\
car & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\
truck & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \\
\end{pmatrix}
$$

$$D'^T = \begin{pmatrix}
d1 & d2 & d3 & d4 & d5 & d6 \\
dim1 & -0.75 & -0.28 & -0.20 & -0.44 & -0.33 & -0.12 \\
dim2 & -0.29 & -0.53 & -0.19 & 0.65 & 0.22 & 0.41 \\
dim3 & 0 & 0 & 0 & 0 & 0 & 0 \\
dim4 & 0 & 0 & 0 & 0 & 0 & 0 \\
dim5 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

We can get rid of zero valued columns and rows
And have a 2 x 2 concept strength matrix

We can get rid of zero valued columns
And have a 5 x 2 term-to-concept similarity matrix

We can get rid of zero valued columns
And have a 5 x 2 term-to-concept similarity matrix

We can get rid of zero valued columns
And have a 2 x 6 concept-to-doc similarity matrix

dim1 and dim2 are the new concepts
We see that query is not related to the d2 in the original space but in the latent semantic space they become highly related, which is true Max[cos(x,y)]=1

Kleinberg’s Algorithm

- Extracting information from link structures of a hyperlinked environment
- Basic essentials
 - Authorities
 - Hubs
- For a topic, authorities are relevant nodes which are referred by many hubs
- For a topic, hubs are nodes which connect many related authorities for that topic
- Authorities are defined in terms of hubs and hubs defined in terms of authorities
 - Mutually enforcing relationship (global nature)
Authorities and Hubs

- The algorithm can be applied to arbitrary hyperlinked environments
 - World Wide Web (nodes correspond to web pages with links)
 - Publications Database (nodes correspond to publications and links to co-citation relationship)

Kleinberg’s Algorithm (WWW)

- Is different from clustering
 - Different meanings of query terms
- Addressed problems by that model
 - Self-description of page may not include appropriate keywords
 - Distinguish between general popularity and relevance
- Three steps
 - Create a focused sub-graph of the Web
 - Iteratively compute hub and authority scores
 - Filter out the top hubs and authorities
Root and Base Set

- For the success of the algorithm base set (sub-graph) should be
 - relatively small
 - rich in relevant pages
 - contains most of the strongest authorities
- Start first with a root set
 - obtained from a text-based search engine
 - does not satisfy third condition of a useful subgraph
- Solution: extending root set
 - add any page pointed by a page in the root set to it
 - add any page that points to a page in the root set to it (at most d)
 - the extended root set becomes our base set
Two Operations

- a[p] … authority weight for page p
- h[p] … hub weight for page p

Iterative algorithm
1. set all weights for each page to 1
2. apply both operations on each page from the base set and normalize authority and hub weights separately (sum of squares=1)
3. repeat step 2 until weights converge

Matrix Notation

- G (root set) is a directed graph with web pages as nodes and their links
- G can be presented as a connectivity matrix A
 - A(i,j)=1 only if i-th page points to j-th page
- Authority weights can be represented as a unit vector a
 - a(i) is the authority weight of the i-th page
- Hub weights can be represented as a unit vector h
 - h(i) is the hub weight of the i-th page
Convergence

- Two mentioned basic operations can be written as matrix operations (all values are updated simultaneously)
 - Updating authority weights: \(a = A^T h \)
 - Updating hub weights: \(h = A a \)
- After \(k \) iterations:
 \[
 a_k = A^T h_k \\
 h_k = A a_k
 \]
 \[h_k \to ((A^T A)^k) h_0\]
 \[a_k \to ((A^T A)^k) a_0\]
- Thus
 - \(h_k \) is a unit vector in the direction of \((A^T A)^k h_0\)
 - \(a_k \) is a unit vector in the direction of \((A^T A)^k a_0\)
- Theorem
 - \(a_k \) converges to the principal eigenvector of \(A^T A \)
 - \(h_k \) converges to the principal eigenvector of \(A A^T \)

Convergence

- \((A^T A)^k v^* \approx \text{const} v_1\) where \(k \gg 1 \), \(v^* \) is a random vector, \(v_1 \) is the eigenvector of \(A^T A \)
- Proof:
 \[
 (A^T A)^k = (A^T A) x (A^T A) x \ldots = (V \Lambda^2 V^T) x (V \Lambda^2 V^T) x \ldots = (V \Lambda^2 V^T) x \ldots = (V \Lambda^2 V^T)
 \]
 Using spectral decomposition:
 \[
 (A^T A)^k = (V \Lambda^2 V^T) = \lambda_1^{2k} v_1 v_1^T + \lambda_2^{2k} v_2 v_2^T + \ldots + \lambda_n^{2k} v_n v_n^T
 \]
 because \(\lambda_1 > \lambda_2 \Rightarrow \lambda_1^{2k} >> \lambda_2^{2k} \)
 thus \((A^T A)^k \approx \lambda_1^{2k} v_1 v_1^T \)
 now \((A^T A)^k v^* = \lambda_1^{2k} v_1 v_1^T x v^* = \text{const} v_1 \)
 because \(v_1^T x v^* \) is a scalar.
Sub-communities

- Authority vector converges to the principal eigenvector of $A^T A$, which lets us choose strong authorities.
- Hub vector converges to the principal eigenvector of $A A^T$ which lets us choose strong hubs.
- However chosen authorities and hubs build a cluster in our network.
- However there can exist different clusters of authorities and hubs for a given topic, which correspond to:
 - different meanings of a term (e.g. jaguar → animal, car, team)
 - different communities for a term (e.g. randomized algorithms)
 - polarized thoughts for a term (e.g. abortion)
- Extension:
 - each eigenvector of $A^T A$ and $A A^T$ represents distinct authority and hub vectors for a sub-community in Graph G, respectively.

PageRank

- PageRank is a link analysis algorithm that assigns weights to nodes of a hyperlinked environment.
- It assigns importance scores to every node in the set which is similar to the authority scores in Kleinberg algorithm.
- It is an iterative algorithm like Kleinberg algorithm.
- Main assumptions:
 - in-degree of nodes are indicators of their importance.
 - links from different nodes are not counted equally. They are normalized by the out-degree of its source.
Simplified PageRank (WWW)

\[\text{Pr}(u) = \sum_{v \in B(u)} \frac{\text{Pr}(v)}{L(v)} \]

- Pr value of a page (node) depends on all pages which have a link to it and contribution of each page is divided by its out-degrees
- PageRank Algorithm simulates a random walk over web pages.
- Pr value is interpreted as probabilities
- In each iteration we update Pr values of each page simultaneously
- After several passes, Pr value converges to a probability distribution used to represent the probability that a person randomly clicking on links will arrive at any particular page

Matrix Notation

\[\text{Pr}_{k \times 1} = M_{k \times k} \times \text{Pr}_{k \times 1} \]

\[M_{ij} = \begin{cases}
1 & \text{if } i \in B_j \\
\frac{1}{|B_j|} & \text{else} \\
0 & \text{else}
\end{cases} \]

- \(M(i,j) \) is the transition matrix and defines fragment of the j-th page’s Pr value which contributes to the Pr value of the i-th page
- PageRank essentially defines a Markov Chain on the pages with transition matrix \(M \) and stationary distribution \(\text{Pr} \)
 - states are pages
 - transitions are the links between pages (all equally probable)
- As a result of Markov theory, Pr value of a page is the probability of being at that page after lots of clicks.
Matrix Notation

Update step

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} =
\begin{pmatrix}
0 & 0.5 & 1 \\
1 & 0 & 0 \\
0 & 0.5 & 0
\end{pmatrix}
\times
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\]

\[
x = 0 \cdot x + \frac{1}{2} \cdot y + 1 \cdot z \\
y = 1 \cdot x + 0 \cdot y + 0 \cdot z \\
z = 0 \cdot x + \frac{1}{2} \cdot y + 0 \cdot z
\]

Non-Simplified Pagerank (WWW)

\[
Pr(u) = \frac{1-d}{k} + d \cdot \sum_{v \in B(u)} \frac{Pr(v)}{L(v)}
\]

Matrix Notation

\[
Pr_{kk1} = M_{kkk} \times Pr_{kk1}
\]

\[
M_j = \begin{cases}
\frac{1-d}{k} + \frac{d}{|B_j|}, & \text{if } i \in B_j \\
\frac{1-d}{k}, & \text{else}
\end{cases}
\]

- (1-d) defines the probability to jump to a page, to which there is no link from the current page
- Theorem:
 - Pr converges to the principal eigenvector of the transition matrix
Thanks for your attention

Special thanks to Iyad