Pearl's algorithm

Message passing algorithm for exact inference in polytree BBNs

Tomas Singliar, tomas@cs.pitt.edu

Outline

- Bayesian belief networks
- The inference task
- Idea of belief propagation
- Messages and incorporation of evidence
- Combining messages into belief
- Computing messages
- Algorithm outlined
- What if the BBN is not a polytree?

Bayesian belief networks

- (G, P) directed acyclic graph with the joint p.d. P
- each node is a variable of a multivariate distribution
- links represent causal dependencies
 - CPT in each node
 - d-separation corresponds to independence
- polytree
 - at most one path between V_i and V_k
 - implies each node separates the graph into two disjoint components
 - (this graph is not a polytree)

The inference task

- we observe the values of some variables $V_{e_1},...,V_{e_{la}}$
- they are the evidence variables E
- Inference to compute the conditional probability $P(X_i | E)$ for all *non-evidential* nodes X_i
- Exact inference algorithm
 - Variable elimination
 - Join tree
 - Belief propagation
- Computationally intensive (NP-hard)
- Approximate algorithms

Pearl's belief propagation

- We have the evidence E
- Local computation for one node V desired
- Information flows through the links of G
 - $_{\square}$ flows as messages of two types λ and π
- V splits network into two disjoint parts
 - Strong independence assumptions induced crucial!
- Denote E_V^+ the part of evidence accessible through the parents of V (causal)
 - \Box passed downward in π messages
- Analogously, let E_V^- be the *diagnostic* evidence
 - passed upwards in λ messages

The π Messages

- What are the messages?
- For simplicity, let the nodes be binary

The message passes on information.

What information? Observe:

$$P(V_2|V_1) = P(V_2|V_1=T)P(V_1=T)$$

$$+ P(V_2 | V_1 = F)P(V_1 = F)$$

The information needed is the CPT of $V_1 = \pi_V(V_1)$

 π Messages capture information passed from parent to child

The Evidence

Evidence – values of observed nodes

$$V_3 = T, V_6 = 3$$

- Our belief in what the value of V_i 'should' be changes.
- This belief is propagated
- As if the CPTs became

V ₃ =T	1.0
V ₃ =F	0.0

Р	V ₂ =T	V ₂ =F
V ₆ =1	0.0	0.0
V ₆ =2	0.0	0.0
V ₆ =3	1.0	1.0

The Messages

- We know what the π messages are
- What about λ?

Assume E = $\{V_2\}$ and compute by Bayes rule:

$$P(V_1 | V_2) = \frac{P(V_1)P(V_2 | V_1)}{P(V_2)} = \alpha P(V_1)P(V_2 | V_1)$$

The information not available at V_1 is the $P(V_2|V_1)$. To be passed upwards by a λ -message. Again, this is not in general exactly the CPT, but the *belief* based on evidence down the tree.

• The messages are $\pi(V)=P(V|E^+)$ and $\lambda(V)=P(E^-|V)$

Combination of evidence

■ Recall that $E_V = E_{V}^+ \cup E_{V}^-$ and let us compute

$$P(V \mid E) = P(V \mid E_{V}^{+}, E_{V}^{-}) = \alpha' P(E_{V}^{+}, E_{V}^{-} \mid V) P(V) =$$

$$\alpha' P(E_{V}^{-} \mid V) P(E_{V}^{+} \mid V) P(V) = \alpha P(E_{V}^{-} \mid V) P(V \mid E_{V}^{+}) =$$

$$\alpha \lambda(V) \pi(V) = BEL(V)$$

- α is the normalization constant
- normalization is not necessary (can do it at the end)
- but may prevent numerical underflow problems

Messages

- Assume X received λ-messages from neighbors
- How to compute $\lambda(x) = p(e^{-}|x)$?
- Let Y₁, ..., Y_c be the children of X
- $\lambda_{XY}(x)$ denotes the λ -message sent between X and Y

$$\lambda(x) = \prod_{j=1}^{c} \lambda_{Y_{j}X_{i}}(x)$$

Messages

- Assume X received π -messages from neighbors
- How to compute $\pi(x) = p(x|e^+)$?
- Let U_1, \ldots, U_p be the parents of X
- $\pi_{XY}(x)$ denotes the π -message sent between X and Y
- summation over the CPT

$$\pi(x) = \sum_{u_1, \dots, u_p} P(x \mid u_1, \dots, u_p) \prod_{j=1}^p \pi_{U_j X_i}(u_j)$$

Messages to pass

• We need to compute $\pi_{xy}(x)$

$$\pi_{XY_J}(x) = \alpha \pi_X(x) \prod_{k \neq j} \lambda_{Y_k X}(x)$$

- Similarly, λ_{XY}(x), X is parent, Y child
- Symbolically, group other parents of Y into V = V₁, ..., V_q

$$\lambda_{Y_{j}X}(x) = \sum_{y_{j}} \lambda_{Y_{j}}(y_{j}) \sum_{v_{1},...,v_{q}} p(y|v_{1},...,v_{q}) \prod_{k=1}^{q} \pi_{V_{k}Y_{j}}(v_{k})$$

The Pearl Belief Propagation Algorithm

- We can summarize the algorithm now:
 - Initialization step
 - For all V_i=e_i in E:

 - $\pi(x_i) = 1$ wherever $x_i = e_i$; 0 otherwise
 - For nodes without parents
 - For nodes without children

The Pearl Belief Propagation Algorithm

Iterate until no change occurs

- (For each node X) if X has received all the π messages from its parents, calculate $\pi(x)$
- (For each node X) if X has received all the λ messages from its children, calculate λ(x)
- (For each node X) if $\pi(x)$ has been calculated and X received all the λ -messages from all its children (except Y), calculate $\pi_{\chi\gamma}(x)$ and send it to Y.
- (For each node X) if $\lambda(x)$ has been calculated and X received all the π -messages from all parents (except U), calculate $\lambda_{XU}(x)$ and send it to U.
- □ Compute BEL(X) = $\lambda(x)\pi(x)$ and normalize

Complexity

- On a polytree, the BP algorithm converges in time proportional to diameter of network – at most linear
- Work done in a node is proportional to the size of CPT
- Hence BP is linear in number of network parameters
- For general BBNs
 - Exact inference is NP-hard
 - Approximate inference is NP-hard

Most Graphs are not Polytrees

- Cutset conditioning
 - Instantiate a node in cycle, absorb the value in child's CPT.
 - Do it with all possible values and run belief propagation.
 - Sum over obtained conditionals
 - Hard to do
 - Need to compute P(c)
 - Exponential explosion minimal cutset desirable (also NP-complete)
- Clustering algorithm
- Approximate inference
 - MCMC methods
 - Loopy BP

Thank you

- Questions welcome
- References
 - Pearl, J.: Probabilistic reasoning in intelligent systems Networks of plausible inference, Morgan – Kaufmann 1988
 - Castillo, E., Gutierrez, J. M., Hadi, A. S.: Expert Systems and Probabilistic Network Models, Springer 1997
 - Derivations shown in class are from this book, except that we worked with π instead of ρ messages. They are related by factor of p(e⁺).
 - www.cs.kun.nl/~peterl/teaching/CS45Cl/bbn3-4.ps.gz
 - Murphy, K.P., Weiss, Y., Jordan, M.: Loopy belief propagation for approximate inference – an empirical study, UAI 99