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Pearl’s algorithm

Message passing algorithm for exact 
inference in polytree BBNs

Tomas Singliar, tomas@cs.pitt.edu
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The inference task
Idea of belief propagation
Messages and incorporation of evidence
Combining messages into belief
Computing messages
Algorithm outlined
What if the BBN is not a polytree?
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Bayesian belief networks

(G, P) directed acyclic graph with 
the joint p.d. P
each node is a variable of a multivariate
distribution
links represent causal dependencies

CPT in each node
d-separation corresponds to independence

polytree
at most one path between Vi and Vk
implies each node separates the graph
into two disjoint components
(this graph is not a polytree)
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The inference task

we observe the values of some variables
they are the evidence variables E
Inference - to compute the conditional probability P(Xi |E)
for all non-evidential nodes Xi

Exact inference algorithm
Variable elimination
Join tree 
Belief propagation

Computationally intensive – (NP-hard)
Approximate algorithms
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Pearl’s belief propagation

We have the evidence E
Local computation for one node V desired
Information flows through the links of G

flows as messages of two types – λ and π

V splits network into two disjoint parts
Strong independence assumptions induced – crucial!

Denote EV
+ the part of evidence accessible 

through the parents of V (causal)
passed downward in π messages

Analogously, let EV
- be the diagnostic evidence

passed upwards in λ messages

Pearl’s Belief Propagation
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The π Messages

What are the messages?
For simplicity, let the nodes be binary

V1

V2

0.2V1=F
0.8V1=T

0.10.6V2=F

0.90.4V2=T
V1=FV1=TP

The message passes on information.

What information? Observe: 

P(V2| V1) = P(V2| V1=T)P(V1=T)

+ P(V2| V1=F)P(V1=F)

The information needed is the 
CPT of V1 = πV(V1)

π Messages capture information 
passed from parent to child

The Evidence

Evidence – values of observed nodes
V3 = T, V6 = 3

Our belief in what the value of Vi
‘should’ be changes.
This belief is propagated
As if the CPTs became
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0.0V3=F
1.0V3=T

0.00.0V6=2

1.01.0V6=3

0.00.0V6=1
V2=FV2=TP
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The Messages

We know what the π messages are
What about λ?

The messages are π(V)=P(V|E+) and λ(V)=P(E-|V)

V1

V2

Assume E = { V2 } and compute by Bayes rule:

The information not available at V1 is the P(V2|V1). To 
be passed upwards by a λ-message. Again, this is not in 
general exactly the CPT, but the belief based on evidence 
down the tree.

)|()(
)(

)|()()|( 121
2

121
21 VVPVP

VP
VVPVPVVP α==

Combination of evidence

Recall that EV = EV
+ ∪ EV

- and let us compute

α is the normalization constant
normalization is not necessary (can do it at the end)
but may prevent numerical underflow problems
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Messages

Assume X received λ-messages from neighbors
How to compute λ(x) = p(e-|x)?
Let Y1, … , Yc be the children of X
λXY(x) denotes the λ-message sent between X and Y
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Messages

Assume X received π -messages from neighbors
How to compute π(x) = p(x|e+) ?
Let U1, … , Up be the parents of X
πXY(x) denotes the π-message sent between X and Y
summation over the CPT
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Messages to pass

We need to compute πXY(x)

Similarly, λXY(x), X is parent, Y child
Symbolically, group other parents of Y into V = V1, … , Vq
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The Pearl Belief Propagation Algorithm

We can summarize the algorithm now:
Initialization step

For all Vi=ei in E: 
λ(xi) = 1 wherever xi = ei ;  0 otherwise
π(xi) = 1 wherever xi = ei ;  0 otherwise

For nodes without parents
π(xi) = p(xi)  - prior probabilities

For nodes without children
λ(xi) = 1 uniformly (normalize at end)
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The Pearl Belief Propagation Algorithm

Iterate until no change occurs
(For each node X) if X has received all the π messages from its 
parents, calculate π(x)
(For each node X) if X has received all the λ messages from its 
children, calculate λ(x)
(For each node X) if π(x) has been calculated and X received all the 
λ-messages from all its children (except Y), calculate πXY(x) and send 
it to Y.
(For each node X) if λ(x) has been calculated and X received all the 
π-messages from all parents (except U), calculate λXU(x) and send it 
to U.

Compute BEL(X) = λ(x)π(x) and normalize

Complexity

On a polytree, the BP algorithm converges in time 
proportional to diameter of network – at most linear
Work done in a node is proportional to the size of CPT
Hence BP is linear in number of network parameters
For general BBNs

Exact inference is NP-hard
Approximate inference is NP-hard
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Most Graphs are not Polytrees

Cutset conditioning
Instantiate a node in cycle, absorb the value in child’s CPT.
Do it with all possible values and run belief propagation.
Sum over obtained conditionals
Hard to do 

Need to compute P(c)
Exponential explosion - minimal cutset desirable (also NP-complete)

Clustering algorithm
Approximate inference

MCMC methods
Loopy BP

Thank you

Questions welcome
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