

BBN inference using junction trees

Mihai Rotaru CS 3750

Problem

- Given a BBN over U (set of variables)
 - Want to compute P(V)
 - Want to compute P(V|E)
- Computing P(V) using the joint distribution P(U) is exponential
 - Requires 2ⁿ⁻¹ sums and n*2ⁿ⁻¹ products if |U|=n and every variable has 2 values

$$P(V) = \sum_{U \setminus V} P(U) = \sum_{U \setminus V} \prod_{i} P(X_{i} | Pa(X_{i}))$$

Solution

- Compute joint over partitions of U
 - $U = \bigcup C_i$
 - C_i sm'all subset of U (typically made of a variable and its parents) - clusters
 - C_i not necessary disjoint
 - Know P(C_i)
- To compute P(X)
 - Need far less operations

$$P(X) = \sum_{C_i \setminus X} P(C_i)$$

$$P(U) = \sum_{C} P(F|D, E)P(D|B)P(E|C)P(B)P(C)$$

$$P(D, E, F) = P(F|D, E)\sum_{B, C} P(D|B)P(E|C)P(B)P(C) =$$

$$= P(F|D, E)\sum_{B} P(D|B)P(B)\sum_{C} P(E|C)P(C) = P(F|D, E)\sum_{B} P(B, D)\sum_{C} P(C, E)$$
Groups D and B Groups E and C

Junction tree

- Undirected tree; each node is a cluster of variables
 C₁; each edge XY labeled with X∩Y (separation set sepset)
- Graphical properties
 - All clusters on path between X and Y must contain X∩Y
 - For each variable V, there is a cluster that contains both V and Pa(V)
- Numerical component
 - Each cluster and sepset has a belief potential t.

Junction tree - continued

- Numerical properties
 - Local consistency C cluster, S neighboring sepset

$$\sum_{C \setminus S} t_C = t_S$$

Encodes the original joint distribution

$$P(U) = \frac{\prod_{i} t_{C_i}}{\prod_{j} t_{S_j}}$$

Can be shown that for such a structure

$$P(C) = t_C$$

$$P(V) = \sum_{C \setminus V} t_C$$

Building the junction tree

- Has 4 steps
 - Build moral graph out of BBN graph
 - Triangulate the moral graph
 - Identify cliques (clusters)
 - Build the joint tree by connecting the clusters
- 2nd and 4th step are nondeterministic

Step 1 – Moral graph

- Drop the directions
- Completely connect all parents of every

Step 2 – Triangulate

 Add edges until the graph is triangulated (i.e. nodes from any cycle are completely connected)

Ellillillateu	maucea	Euges
Vertex	Cluster	Added
Н	EGH	none
G	CEG	none
F	DEF	none
C	ACE	(A,E)
В	ABD	(A,D)
D	ADE	none
E	AE	none
A	A	none

Triangulated Graph

Elimination Ordering

Step 3 – Identify cliques

Use the step 2 to get all the cliques

Triangulated Graph

Eliminated Vertex	Induce Cluste	
VOITOX	Cidoto	Addod
H	EGH	none
G	CEG	none
F	DEF	none
C	ACE	(A,E)
В	ABD	(A,D)
D	ADE	none
E	AE	none
A	A	none
		l

Elimination Ordering

Building the numeric component

- 2 steps
 - Initialization
 - Global propagation

Step 1 - Initialization

- Set t_C to 1 for every cluster and sepset
- For every variable V choose a cluster C that contains V and Pa(V) and do
 - t_C <- t_C * P(V|Pa(V))
- Remark: the second numeric property holds now

Step 2 – Global propagation

Use the message passing procedure

- Second property still holds and X is consistent with S
- Moreover, if Y was consistent with S before the message it will still be consistent after the message

Step 2 – Global propagation (cont)

- Choose a cluster X
- Do message passing towards X (Collect evidence)
- Do message passing away from X (Distribute evidence)
- After two passes the structure satisfies both numeric properties
- We need a tree so that propagation can finish

Handling evidence

- What about P(V|E)
- Cut part of the belief potential by setting to 0 where the value differs from the evidence value
- Apply same algorithm