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Bayesian belief networks
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Modeling large probability distributions

• Let                                       be a set of features (represented as 
random variables), each with discrete set of values

• Full joint distribution:
– joint distribution over all random variables defining the 

domain
– Sufficient to do any probabilistic inference 

Problems:
• Space complexity. To store full joint distribution requires to 

remember             numbers.
n – number of random variables, u – number of values

• Inference complexity. To compute some queries  requires             
.            steps. )(unO
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Pneumonia example.

Random variables:
• Pneumonia (2 values: T,F), 
• Fever (2: T,F), 
• Cough (2: T,F), 
• WBCcount (3: high, normal, low), 
• Paleness (2: T,F)
Joint distribution
• Space complexity:

Number of value assignments: 
2*2*2*3*2=48

We need to define at least 47 probabilities.

Pneumonia

Cough

Fever

Pale

WBC count
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Pneumonia example. Inferences

Any probabilistic query can be computed once the full joint is 
known

• Time complexity of computations
– Assume we need to compute the probability of 

Pneumonia=T from the full joint
– Sum over 2*2*3*2=24 combinations

How to compute:

== )( TPneumoniaP
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution more compactly with 

smaller number of parameters. 
• Take advantage of conditional and marginal independences 

among components in the distribution

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Alarm system example.
• Assume your house has an alarm system against burglary. 

You live in the seismically active area and the alarm system 
can get occasionally set off by an earthquake. You have two 
neighbors, Mary and John, who do not know each other. If 
they hear the alarm they call you, but this is not guaranteed. 

• We want to represent the probability distribution of events:
– Burglary, Earthquake, Alarm, Mary calls and John calls

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

Causal relations
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A)
P(M|A)

1. Graph reflecting direct (causal) dependencies between variables
2. Local conditional distributions relating variables and their parents
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Bayesian belief networks (general)

Two  components:
• Directed acyclic graph

– Nodes correspond to random variables 
– (Missing) links encode

conditional independences
• Parameters

– Local conditional probability distributions
for every variable-parent configuration

))(|( ii XpaXP

A

B

MJ

E),( SSB Θ=

)( iXpa - stand for parents of  Xi

Where:

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(A|B,E)
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Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• But how did we get to local parameterizations?
Answer:
• Graphical structure encodes conditional and marginal 

independences among random variables
• A and B are independent
• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Independences in BBNs
3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP =
)|()|()|,( ABPAJPABJP =
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Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP =

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP =

)|()|()|,( AMPAJPAMJP =
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Independences in BBNs
3 basic independence structures encoded in BBNs

1. JohnCalls is independent of Burglary given Alarm
2. Burglary is independent of Earthquake (not knowing Alarm) 

Burglary and Earthquake become dependent given Alarm !!
3. MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBN

• BBN distribution models many conditional independence 
relations relating distant variables and sets

• These are defined in terms of the graphical criterion called d-
separation

• D-separation in the graph
– Let X,Y and Z be three sets of nodes
– If X and Y are d-separated by Z then X and Y are 

conditionally independent given Z
• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked

• Path blocking
– 3 cases that expand on three basic independence structures
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Undirected path blocking

• 1.  With linear substructure

• 2.  With wedge substructure

• 3.  With vee substructure

Z in C

Z in C

X Y

Z or any of its descendants not in C

X

X

Y

Y
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Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls F
• Burglary and MaryCalls are independent (not knowing Alarm)   F
• Burglary and RadioReport are independent given Earthquake      T
• Burglary and RadioReport are independent given MaryCalls F

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

RadioReport
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP ==========

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:
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Parameters:
full joint:

BBN:

Parameter complexity problem

• In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

322 5 =

20)2(2)2(22 23 =++

Parameters to be defined:
full joint:

BBN:

3112 5 =−

10)1(2)2(22 2 =++
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Model acquisition problem

The structure of the BBN typically reflects causal relations
• BBNs are also sometime referred to as causal networks
• Causal structure is very intuitive in many applications domain 

and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional 
distributions relating a random variable and its parents only

• Their complexity much smaller than the full joint
• Easier to come up (estimate) the probabilities from expert or 

automatically by learning from data
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BBNs built in practice

• In various areas:
– Intelligent user interfaces (Microsoft)
– Troubleshooting, diagnosis of a technical device
– Medical diagnosis:

• Pathfinder (Intellipath)
• CPSC
• Munin
• QMR-DT

– Collaborative filtering
– Military applications
– Insurance, credit applications

CS 3750 Machine Learning

Diagnosis of car engine

• Diagnose the engine start problem 
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Car insurance example

• Predict claim costs (medical, liability) based on application data

CS 3750 Machine Learning

(ICU) Alarm network
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CPCS
• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)
• 422 nodes and 867 arcs

CS 3750 Machine Learning

QMR-DT 

• Medical diagnosis in internal medicine

Bipartite network of disease/findings relations
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Inference in Bayesian networks 
• BBN models compactly the full joint distribution by taking 

advantage of existing independences between variables
• Simplifies the acquisition of a probabilistic model
• But we are interested in solving various inference tasks:

– Diagnostic task. (from effect to cause)

– Prediction task.  (from cause to effect)

– Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct 
special algorithms and speedup the inference?

)|( TJohnCallsBurglary =P

)|( TBurglaryJohnCalls =P

)( AlarmP
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Inference in Bayesian network
• Bad news: 

– Exact inference problem in BBNs is NP-hard (Cooper)
– Approximate inference is NP-hard (Dagum, Luby)

• But very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute:

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

)( TJP =
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Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all uninstantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 15
Number of products: 16*4=64

== )( TJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

),,,,(
, , , ,

mMTJaAeEbBP
FTb FTe FTa FTm

====== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =
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Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+ 2*(1)+2*(1+2*(1))=9
Number of products: 2*(2+2*(1)+2*(2*(1)))=16

== )( TJP

)](),|()[()|()|(
,, . ,

eEPeEbBaAPbBPaAmMPaATJP
FTeFTb FTa FTm

========== ∑∑ ∑ ∑
∈∈ ∈ ∈

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈
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Inference in Bayesian networks

• The smart interleaving of sums and products can help us to 
speed up the computation of joint probability queries

• What if we want to compute:

• A lot of shared computation
– Smart cashing of results can save the time for more queries

),( TJTBP ==

=== ),( TJTBP

])](),|()[()][|()[|(
, ,,
∑ ∑∑
∈ ∈∈

==========
FTm FTeFTa

eEPeETBaAPTBPaAmMPaATJP

== )( TJP

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP
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Inference in Bayesian networks

• The smart interleaving of sums and products can help us to 
speed up the computation of joint probability queries

• What if we want to compute:

• A lot of shared computation
– Smart cashing of results can save the time if more queries

),( TJTBP ==

=== ),( TJTBP

== )( TJP
]])(),|()[()][|()[|(

, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

])](),|()[()][|()[|(
, ,,
∑ ∑∑
∈ ∈∈

==========
FTm FTeFTa

eEPeETBaAPTBPaAmMPaATJP
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Inference in Bayesian networks

• When cashing of results becomes handy?
• What if we want to compute a diagnostic query:

• Exactly probabilities we have just compared !!
• There are other queries when cashing and ordering of sums 

and products can be shared and saves computation

• General technique: Variable elimination

)(
),()|(

TJP
TJTBPTJTBP

=
==

===

),(
)(

),()|( TJB
TJP
TJBTJB ==

=
=

== PPP α
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Inference in Bayesian networks

• General idea of variable elimination 

]])(),|()[()][|()][|([
, , ,, ,
∑ ∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

==========
FTm FTb FTeFTa FTj

eEPeEbBaAPbBPaAmMPaAjJP

== 1)(TrueP

)(af J )(af M ),( baf E

)(af B
A

J M B

E

Variable order:

Results cashed in
the tree structure
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Inferences in Bayesian network

• Exact inference algorithms:
– Symbolic inference (D’Ambrosio)
– Recursive decomposition (Cooper)
– Message passing algorithm (Pearl)
– Clustering and joint tree approach (Lauritzen, 

Spiegelhalter) 
– Arc reversal (Olmsted, Schachter)

• Approximate inference algorithms:
– Monte Carlo methods:

• Forward sampling, Likelihood sampling
– Variational methods 


