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Principal component analysis (PCA)

• Objective: We want to replace a high dimensional input with 
a small subset of set of features 

• Principal component analysis (PCA):
– A linear transformation of d dimensional input x to M 

dimensional feature vector z such that                 under 
which the retained variance is maximal.

– Equivalently it is the linear projection for which the sum of 
squares reconstruction cost is minimized.
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Xprim=0.04x+ 0.06y- 0.99z
Yprim=0.70x+0.70y+0.07z  
97% variance retained    
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Principal component analysis (PCA)

• PCA:
– linear transformation of d dimensional input x to M 

dimensional feature vector z such that               under which 
the retained variance is maximal.

– Task independent
• Fact:

– A vector x can be represented using a set of orthonormal
vectors u 

– Leads to transformation of coordinates  (from x to z using 
u’s)
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PCA

• Idea: replace d coordinates with M of coordinates to 
represent x. We want to find the subset M of basis vectors.

• How to choose the best set of basis vectors?
– We want the subset that gives the best approximation of 

data x in the dataset on average (we use least squares fit)
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PCA

• Differentiate the error function with regard to all         and 
set equal to 0 we get:

• Then we can rewrite:

• We want to optimize the error function over basis vectors     : 
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PCA
• The error function

is optimized in terms of basis vectors          when they satisfy:

Vectors        that satisfy:
• correspond to eigenvectors of 
The best M basis vectors that lead to the optimal error:
discard  vectors with d-M smallest eigenvalues (or keep vectors 

with M largest eigenvalues)
Eigenvector         – is called a principal component
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PCA

• Once eigenvectors       with largest eigenvalues are identified, 
they are used  to transform the original d-dimensional data to 
M dimensions

• To find the “true” dimensionality of the data d’ we can just 
look at eigenvalues that contribute the most (small eigenvalues
are disregarded)

• Problem: PCA is a linear method. The “true” dimensionality 
can be overestimated. There can be non-linear correlations.

iu

1u
2u

x

1x

2x

CS 3750 Machine Learning

PCA  and its relations

• Multivariate normal:
• Parameters:         - mean

- covariance matrix
• Density function:

• Example:
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Parameter estimates

• Loglikelihood
• ML estimates of the mean and covariances:

• Unbiased estimate:

• Notice that in PCA we want to optimize (minimize):

– Differs by a scalar from the covariance matrix
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Dimensionality reduction with neural nets

• PCA is  limited to linear dimensionality reduction
• To do non-linear reductions we can use neural nets
• Auto-associative network: a neural network with the same 

inputs and outputs ( x )  

• The middle layer corresponds to the reduced dimensions
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Dimensionality reduction with neural nets

• Error criterion:

• Error measure tries to recover the original data through limited
number of dimensions in the middle layer 

• Non-linearities modeled through 
intermediate layers between 
the middle layer and input/output

• If no intermediate layers are used 
the model replicates PCA 
optimization through learning
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Networks with radial basis functions

• An alternative to multilayer NN for non-linearities
• Radial basis functions:

– Based on interpolations of prototype points (means)
– Affected by the distance between the x and the mean
– Fit the  outputs of basis functions through the linear model

• Choice of basis functions:

• Learning:
– In practice seem to work OK for up to 10 dimensions
– For higher dimensions (ridge functions – logistic) 

combining multiple learners seem to do better job
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