CS 3750 Machine Learning Lecture 6

PCA + SVD

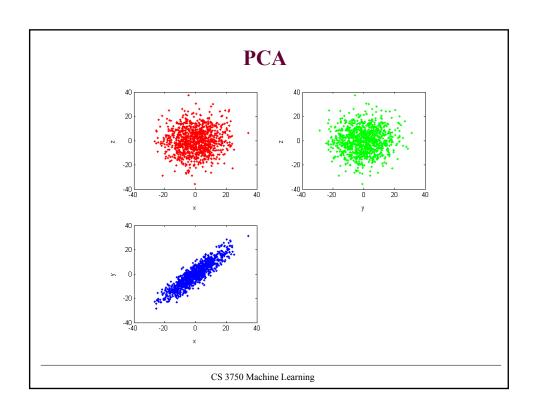
Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

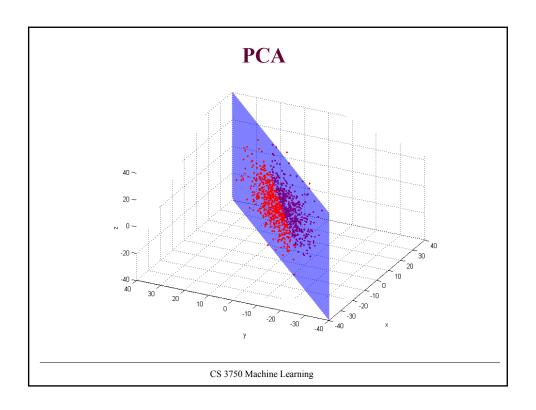
CS 3750 Machine Learning

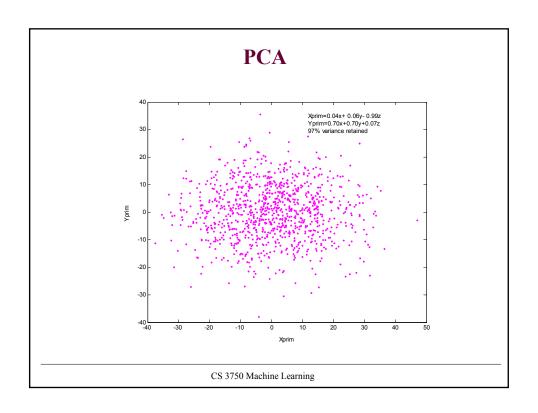
Principal component analysis (PCA)

- Objective: We want to replace a high dimensional input with a small subset of set of features
- Principal component analysis (PCA):
 - A linear transformation of d dimensional input x to M dimensional feature vector z such that M < d under which the retained variance is maximal.
 - Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.









Principal component analysis (PCA)

• PCA:

- linear transformation of d dimensional input x to M dimensional feature vector z such that M < d under which the retained variance is maximal.
- Task independent

• Fact:

- A vector x can be represented using a set of **orthonormal** vectors u $\mathbf{x} = \sum_{i=1}^{d} z_{i} \mathbf{u}_{i}$
- Leads to transformation of coordinates (from x to z using u's)

$$z_i = \mathbf{u}_i^T \mathbf{x}$$

CS 3750 Machine Learning

PCA

• Idea: replace d coordinates with M of z_i coordinates to represent x. We want to find the subset M of basis vectors.

$$\widetilde{\mathbf{x}} = \sum_{i=1}^{M} z_i \mathbf{u}_i + \sum_{i=M+1}^{d} b_i \mathbf{u}_i$$

 b_i - constant and fixed

- How to choose the best set of basis vectors?
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)

Error for a data entry $\mathbf{x}^n = \mathbf{x}^n = \sum_{i=M+1}^d (z_i^n - b_i) \mathbf{u}_i$

$$E_{M} = \frac{1}{2} \sum_{n=1}^{N} \left\| \mathbf{x}^{n} - \widetilde{\mathbf{x}}^{n} \right\|_{L^{2}} = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i})^{2}$$

PCA

• Differentiate the error function with regard to all b_i and set equal to 0 we get:

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = \mathbf{u}_i^T \overline{\mathbf{x}} \qquad \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$$

• Then we can rewrite:

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

• We want to optimize the error function over basis vectors \mathbf{u}_i :

$$E_{M} = \min_{\text{subsets of } u_{i}} \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i}$$

CS 3750 Machine Learning

PCA

• The error function

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

is optimized in terms of basis vectors \mathbf{u}_i when they satisfy:

$$\Sigma \mathbf{u}_{i} = \lambda_{i} \mathbf{u}_{i} \implies \lambda_{i} \mathbf{u}_{i}^{T} \mathbf{u}_{i} = \lambda_{i} 1 \implies E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \lambda_{i}$$

Vectors \mathbf{u}_i that satisfy:

• correspond to eigenvectors of Σ

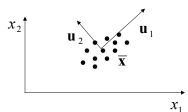
The best *M* basis vectors that lead to the optimal error:

discard vectors with *d-M* smallest eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector \mathbf{u}_i – is called a **principal component**

PCA

• Once eigenvectors \mathbf{u}_i with largest eigenvalues are identified, they are used to transform the original *d*-dimensional data to *M* dimensions



- To find the "true" dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- **Problem:** PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.

CS 3750 Machine Learning

PCA and its relations

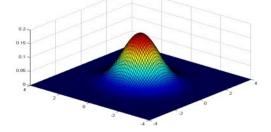
- Multivariate normal: $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Parameters: μ mean

 Σ - covariance matrix

• Density function:

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

• Example:



Parameter estimates

- Loglikelihood $l(D, \mu, \Sigma) = \log \prod_{i=1}^{n} p(\mathbf{x}_{i} | \mu, \Sigma)$
- ML estimates of the mean and covariances:

$$\hat{\mathbf{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$

$$\hat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \hat{\mathbf{\mu}}) (\mathbf{x}_{i} - \hat{\mathbf{\mu}})^{T}$$

- Unbiased estimate: $\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i \hat{\boldsymbol{\mu}}) (\mathbf{x}_i \hat{\boldsymbol{\mu}})^T$
- Notice that in PCA we want to optimize (minimize):

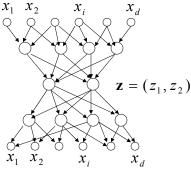
$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$

- Differs by a scalar from the covariance matrix

CS 3750 Machine Learning

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative network: a neural network with the same inputs and outputs (x)



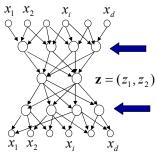
• The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

Error criterion:

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning



CS 3750 Machine Learning

Networks with radial basis functions

- An alternative to multilayer NN for non-linearities
- Radial basis functions: $f(x) = w_0 + \sum_{j=1}^k w_j \phi_j(\mathbf{x})$
 - Based on interpolations of prototype points (means)
 - Affected by the distance between the x and the mean
 - Fit the outputs of basis functions through the linear model
- Choice of basis functions:

Gaussian
$$\phi_j(x) = \exp\left\{\frac{\left\|x - \mu_j\right\|^2}{2\sigma_j^2}\right\}$$

- Learning:
 - In practice seem to work OK for up to 10 dimensions
 - For higher dimensions (ridge functions logistic) combining multiple learners seem to do better job