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[Subset Selection

= One looks for a subset F € {1, ..., d} of features that
is useful for prediction. The main reasons are
o Prediction accuracy might be improved by sacrificing a bit
of bias in exchange for reducing the variance
o It easier to interpret a simple model than a complex one

m  There are different variants of subset selection

o Exhaustive version of the algorithm searches all possible
subsets F. Even if correct, this approach is not feasible for
the large number of features because the number of
subsets grows as 2¢

o Incremental approaches start with F = {} ({1, ..., d}) and on
the basis of some information criterion add (remove) a
new feature to (from) F. These methods are guided by
heuristics, which may be wrong

[Continuous Subset Selection

=  What is wrong with subset selection?

o Features are either preserved in F or discarded. As this
decision process is discrete, the prediction capability of
the model may change significantly if a feature is
preserved (discarded)

= Continuous version of subset selection is
represented by

o Shrinkage methods (regularization)
= Ridge regression
= Lasso regression

o Methods using derived input directions
= Principal components regression
» Partial least squares




Ridge Regression

Ridge regression is an extension of linear regression by
adding a quadratic penalizing term

pre = argmins{i(yi ~By—xIBf +%BTB}

i=1
Intuitively, the larger the value of A is, the larger is the
shrinkage of the weights
The optimalization problem can be equally formalized as
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There exists one-to-one mapping between A and s

Reparametrization Using
Centered Inputs

If we adopt the assumption that x; . are centered and f3, is
approximated as the mean of y;s, we can rewrite the formula
as
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This indicates that ridge regression can be expressed in
matrix notation similarly to the linear regression as

RSS(1)=(y-XB)" (y-Xp)+1p'B




Solving Ridge Regression

Ridge regression can be solved exactly, which is similar to
linear regression

RSS(L) = (y—XB)'(y—XB)+p'p
VRSS(A) = —2X"(y—Xp)+2rIB =0
~X"(y—XB)+rIB =0
X"y +X"XB+AIB =0
X"+ = X'y
B = (x"x+21)'XTy

Nice property of the solution is that even if XTX is singular, the
addition of Al makes it nonsingular, which in turn means that
an inverse matrix exists

Ridge Regression and Some
Linear Algebra

Every matrix X has singular value decomposition of the
following form, where U spans the column space of X, and V
spans the row space of X

X= U .D.V
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Least squares fit can be rewritten as
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Ridge Regression and Some
Linear Algebra

Ridge regression fit can be rewritten as well as
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XpE = X(X"X+A1)'X"y = UDVT[(UDVT)T UDV" + MJ (Upv™)'y
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= Zuj unb" respect to the
e orthonormal basis U

D is a diagonal matrix with entriesd, >d, > ... >d; >0

Ridge Regression and Some
Linear Algebra

If d, < d, then forany 2. >0

¢ _ 4

——<—5—<1
di+0  dl+A

D? is a matrix of eigenvalues and V is a matrix of eigenvectors
for the covariance matrix X™X (Eigen Decomposition Theorem)

X = UDV'

X'X = (UpbvT) upv?
~
(AB)"=B"AT

XX = vD'U'UDV'
—
u'u=1

X'™X = VD*V'




Ridge Regression and Some
Linear Algebra

The first principal component z,, which preserves the most of
the variance, can be expressed as

z, =Xv, =u/d,
and the latter equality holds because of
X = UDV'=UDV’
XV = UD

As principal components are perpendicular to each other, and
u; can be viewed as a normalized version of z;, we can
conclude that the shrinkage of d. affects how much are the
coordinates regarding a principal component shrunken

Ridge Regression as the Mean of
a Posterior Distribution
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Lasso Regression

Lasso regression has penalty defined as the sum of the
absolute values of the weights 3 as

N

B = argmin, > (v, ~B,~x/BJ

i=1

satisfying Zd: ‘Bj‘ <t
j=l

Absolute value in lasso penalty makes the problem of weights’
estimation non-linear

The penalty tends to drive less important weights to zero
faster than the one in ridge regression

Methods Using Derived Input
Directions

Principal components regression uses M < d vectors selected
by PCA to do regression on them

As these vectors are orthogonal, regression problem is divided
into M independent regression problems

As opposing to PCR, partial least squares technique takes into
account y when features are selected




The Last Word

Regularization encompassed more general problems of the
form

%n{i Ly, f(x,))+ M(f)}

where L(y, f(x)) is a loss function, J(f) is penalty for the
parameterization, and H is a space where J(f) is defined

In addition to linear regression, another useful application of
regularization is in neural networks




