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Subset Selection

One looks for a subset F ∈ {1, …, d} of features that 
is useful for prediction. The main reasons are

Prediction accuracy might be improved by sacrificing a bit 
of bias in exchange for reducing the variance
It easier to interpret a simple model than a complex one

There are different variants of subset selection
Exhaustive version of the algorithm searches all possible 
subsets F. Even if correct, this approach is not feasible for 
the large number of features because the number of 
subsets grows as 2d

Incremental approaches start with F = {} ({1, …, d}) and on 
the basis of some information criterion add (remove) a 
new feature to (from) F. These methods are guided by 
heuristics, which may be wrong

Continuous Subset Selection

What is wrong with subset selection?
Features are either preserved in F or discarded. As this 
decision process is discrete, the prediction capability of 
the model may change significantly if a feature is 
preserved (discarded)

Continuous version of subset selection is 
represented by

Shrinkage methods (regularization)
Ridge regression
Lasso regression

Methods using derived input directions
Principal components regression
Partial least squares
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Ridge Regression

Ridge regression is an extension of linear regression by 
adding a quadratic penalizing term

Intuitively, the larger the value of λ is, the larger is the 
shrinkage of the weights
The optimalization problem can be equally formalized as

There exists one-to-one mapping between λ and s
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Reparametrization Using 
Centered Inputs

If we adopt the assumption that xi, j are centered and β0 is 
approximated as the mean of yis, we can rewrite the formula 
as

This indicates that ridge regression can be expressed in 
matrix notation similarly to the linear regression as
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Solving Ridge Regression 

Ridge regression can be solved exactly, which is similar to 
linear regression

Nice property of the solution is that even if XTX is singular, the 
addition of λI makes it nonsingular, which in turn means that 
an inverse matrix exists
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Ridge Regression and Some 
Linear Algebra

Every matrix X has singular value decomposition of the 
following form, where U spans the column space of X, and V 
spans the row space of X

Least squares fit can be rewritten as
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Ridge Regression and Some 
Linear Algebra

Ridge regression fit can be rewritten as well as

D is a diagonal matrix with entries d1 ≥ d2 ≥ … ≥ dd ≥ 0
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Ridge Regression and Some 
Linear Algebra

If di < dj, then for any λ ≥ 0

D2 is a matrix of eigenvalues and V is a matrix of eigenvectors 
for the covariance matrix XTX (Eigen Decomposition Theorem)
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Ridge Regression and Some 
Linear Algebra

The first principal component z1, which preserves the most of 
the variance, can be expressed as

and the latter equality holds because of

As principal components are perpendicular to each other, and 
uj can be viewed as a normalized version of zj, we can 
conclude that the shrinkage of dj affects how much are the 
coordinates regarding a principal component shrunken
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Ridge Regression as the Mean of 
a Posterior Distribution
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Lasso Regression

Lasso regression has penalty defined as the sum of the 
absolute values of the weights β as

Absolute value in lasso penalty makes the problem of weights’
estimation non-linear
The penalty tends to drive less important weights to zero 
faster than the one in ridge regression
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Methods Using Derived Input 
Directions

Principal components regression uses M ≤ d vectors selected 
by PCA to do regression on them
As these vectors are orthogonal, regression problem is divided 
into M independent regression problems
As opposing to PCR, partial least squares technique takes into 
account y when features are selected
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The Last Word

Regularization encompassed more general problems of the 
form

where L(y, f(x)) is a loss function, J(f) is penalty for the 
parameterization, and H is a space where J(f) is defined
In addition to linear regression, another useful application of 
regularization is in neural networks
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