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Ensemble methods

» Bagging reduces the expected error by decreasing the variance

» Boosting reduces the expected error by decreasing the variance
(can be increased (?)) and the bias

e Train errors can be driven to 0

+ But the test (generalization) errors do not show overfitting
(paradox ?)




Margin

* Ensemble classifier prediction = weighted vote over a set of base
classifiers

* Margin — difference between the weight assigned to the correct label
and the maximal weight assigned to any incorrect label

* Margin distribution graphs — margin for a set of examples
* Boosting and bagging increase the margins

* Boosting is especially useful for examples with small initial margins

Margin & test error

* Prove that achieving a large margin on the training set results in an
improved bound on the generalization (test) error

* The bound does not depend on the number of classifiers that are
combined in the vote

* The bound is not asymptotic




Definitions

Output: {-1, 1}
» H the space of base classifiers
« h € H mapping from an instance space X to {-1, +1}

* The examples are generated independently at random according to
some fixed but unknown distribution D over X x {-1, +1}

* The training data is a list of m pairs:

S ={x,y,).(x,,y,),---(x,,, )y chosen according to D

Definitions

* F, ,, p[A]: probability of event 4 when the example (x, y)is chosen
accordingto D. (Abbreviated by P,[ 4]).

* P, ,,_s[A]: probability withrespect to choosingan example uniformly

atrandomfrom the training set. (Abbreviated by P;[ 4]).




Definitions

. C;{f;x}—> Zczhh(x)|ah > O;Zah =1} convex hull C of H as

heH heH
the set of mapping that can be generated by taking a weighted
average of classifier from H
e A classifier f'in C predicts label y for input xif f(x,y) > max ., f(xy!
emargin (fx.y) = f(xy)- max . f(xy)
e f gives the wrong prediction on (x,y) only if
margin (f,x,y) <0

Definitions

* the majority vote rule that is associated with f gives the wrong
prediction on the example (x,y) only if yf(x) <0

» the margin of an example (x,y) in this case is simply yf(x)

. the following two theorems state that with high probability, the
generalization error of any majority vote classifier can be bounded in
terms of the number of training examples with margin below a
threshold 6, plus an additional term which depends on the number of
training examples, some complexity measure of H, and the
threshold 6




Theorem 1 (finite classifier space)

* Let D be a distribution over X x {-1, +1}, and let S be a sample of m
examples chosen independently at random according to D. Assume
that the base-classifier space H is finite, and let >0. Then with
probability at least 1- & over the random choice of the training set S,
every weighted average function f € C satisfies the following
bound for all 6>0:

P,[yf (x)<0]

<P[yf(x)< 9]+o{

1 logmlog‘H‘
2

M( +10g(1/5))1/2j

Theorem 1 - proof

eDefine C,, to be the set of unweighted averages
over N elements from H :

C, i{f:xH%ihi(x) I, EH}

(approximating set)
e Any majority vote classifier /' € C can be associated with a
distribution over H as defined by the coefficients a,
By choosing N elements of H independently at random
according to this distribution we can generate an element of C,,




Theorem 1 - proof

eDefine a function of g € C,, distributed according to Q
and selected by choosing 4, ..., A,

independently at random according

to the coefficients a,

°g(x)=( VN)Z hi(x)

Theorem 1 - proof

P,[yf(x)<0]
= P,lye(x) <012, yf (x) < 0]+ P, ve(x) > 012, yf (x) < 0]

P[A]=P[BNA+P[BNA]

<P, [yg(x)<0/2]+ P,[yg(x)>0/2, yf(x) < 0] (1)

Vv

P[A]<P[B]+P[BNA]




Theorem 1 - proof

eEquation (1) holds for any g € C, we can take the expected
value of the right hand side wrt Q and get :

Py[yf (x) <0]

<P,, olvg(x)<0/2]+ P, ,[yg(x)>0/2,yf(x)<0]

= E, [P lig (1) <0/2]]+ E, [P, y[yg(x) > /2,5 (x) < 0]
olP [yg(x) <0/2]]+

E,[P, Q[yg<x> >0/2]yf (x)<0]] 2)

P(ANB)=P(AB)*P(B)<P(A4|B) B

Chernoff bound

eletX, ..., X, be discrete, independent random
variables such that £/X,] = 0Oand|X,| <1 foralli.

N
Let X = > X, and o’ be the variance of .X. Then

i=1
Pr/lX] = Ao] < 2e*7*
forany0 < A< 20




Theorem 1 - proof

eBoth terms are bounded separately, starting with B

e The Chernoff bound for B:

P [ve(x)>0/2|yf(x)<0]<e™ " (3)

Theorem 1 - proof

e The probability over the choice of S that there
existsany g € C,, and 8 > 0 for which (unionbound):
Polyg(x)<0/2] > Fy[yg(x)<0/2] +¢y

is at most (N + 1)|CN|e’2'"“2V

e The e >"*comes from the Chernoff bound which holds for
any single choice of g and ¢

e The term (N + 1)|C,|is anupper bound on the number of

such choices where we have used the fact that, because of the

form of functionsin C,,, we need only consider values of 6 of
the form 2i/N fori = 0,...,N.




Theorem 1 - proof

Thus, if we set e, =+/(1/2m) In((N +1)|H|" /5, and take
expectation with respect to O, we get that, with probability
atleast 1- 5

Py o olv8(x)SO0/2] <Py, o[yg(x)<0/2] +ey,  (4)

C

Py o[vg(x)<0/2]
<Py, olf (X) S O]+ Py, o[vg(x) < 0/2,f (x)> 0]

P(A)=P(ANB)+P(ANB)
P(A)<P(B)+P(ANB)

=P [yf (x) < O] + E5[P, ,[ye(x) < 0/2,f(x) > 0]]

S B [yf (x) SO] + Eg[P, »[yvg(x) <0/2] yftx) > 0]] )
D P(A,B)=P(A|B)*P(B)<P(A|B) E

Theorem 1 - proof

To bound E, use Chernoff bound:

Ey[P, o[v(x)<0/2| yf(x)>0]] <e™™"* (6)
Let 6, =0/ N(N +1),s0 the probability of failure for
any N will be at most :

D Sy=D>6/N(N+1)=> 6/N-5/(N+1)

N>1 N>1 N>1

=0/1-0/2+6/2-6/3+6/3-5/4+...
=0




Theorem 1 - proof

Then combining Equations (2), (3), (4), (5) and (6), we get that,
with probability at least 1-8, for every 8>0 and every N>1:

Pylyf (x) < 0]< Py[yf (x) < 0]+ 2e7 V0% 4 \/%m[%] 7)
m

And N =[(4/ 02)In(m / In(|H])) |

Theorem 1 - proof

Pylyf (x) < 0]

Polyf (x) < 0]+ Ze]”z”‘-k\/1 1n[N(N+1) |H| J @
2m S

IA

Ps[yf(x)ﬁ 9]+ 28*111("1/1!1(‘[‘1"))/2
+ ! (InN+21n(N+1)+N1n(H)+ln(l)jl/2
~2m S

= Py (x)< 0]+ 2efln(m/ln(‘H‘))/2 +

replace all N

In (@4 62)in( m /In( |H]) ]
\/21_ v 2 [@ 02y m /i | ) T+ 1)
m

+ (@ 02)yn( m /in( |H ) Jin( H )+ In( (15—)




Theorem 1 - proof

6 is constanst
less than 1/2.

2
1+ +
\J(m /In( |H )

31n In( m /In( |H |)

S Py (x)<0

1/2

N2m |+ (@& 6*)In(m /In( |H |)) In( |H |) + In( ;—)

2

+
\J(m / In(|H |))
31n In( m /In( |H |))

= Ps[yf (x) < 0]+

1/2

1
N2m +(4/Hz)ln(m)ln(|H|)—ln1n(|H|)ln(H)+ln(;—)

log m log |H|
2

& Ps[yf(x>s9]+0<j;< Flog(1/6)'"?)

Theorem 1 - discussion

olf 5 >0and @ >0 are held fixed as m — o, then the bound converges to

A (x)solsps[yﬂx)sepw ﬂ{ \/ﬁ J
49_, m

pe
Infact,if @<1/2, &=0.01(1% probability of failure), |H>10°
and m >1000 then F is a pretty good approximat ion of the second
and third terms on the right -hand side of Equation (7)
e Even though not asymptotic the bounds are loose
i.e. start to be meaningful only with the large training set
(10,000s)




Theorem 1 - discussion

bound
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Figure : A few plots of the second and third termis in the bound given in Equation (8) (solid lines) and their
approximation by the second term in Equation (9) (dotted linesy. The horizontal axis denotes the number of
training examples (with a logarithmic scale) and the vertical axis denotes the value of the bound. All plots are for
d =001 and [H| = 106, Each pair of close lines corresponds to a different value of ¢ counting the pairs from
the upper right to the lower lell, the values of @ are 1/20. 1/8. 1/4and 1,2,

Theorem 2 (infinite classifier space)

Theorem 2
LetD be a distributionover X x{-1,+1},andlet S be a sample
of m exampleschosenindependently at randomaccordingtoD.
Suppose the base - classifier space Hhas VC-dimensiond,and
let 5 > 0. Assume thatm>d>1. Then with probability at least

1- 6 over the random choice of the trainingset S, every weighted
average functionf e C satisfies the followingboundfor all 8 >0:

P,y (1) <0]< B[y (x) 0]+ O[ﬁ (dl"ge—(z’”/d) + loga/é))”]




AdaBoost and Margin Distribution

¢ AdaBoost-rerunninga baselearningalgorithm,
each time usinga differentdistribution over training
examples

e The goal - to find a classifier 4, with smallerror

& =By #h(x)]

eOneachrounds =1,..., T a distribution D,

is computedover the trainingexamples

Dt+l(l) = Dt(l)eXp(Z_ yiathz(xi))

t

, Where

1
a 2511’1((1—8,)/6})

Z, isanormalization factor D, (i)'s shouldaddup to 1

AdaBoost and Margin Distribution

¢ Combined classifier - a weighted majority vote
of the base classifiers

ZT: a,h,(x)
fog ="
2

¢ Onroundt, AdaBoost places the most weight on
examples (x,y) for which

t-1
yZat,h,,(x) is the smallest (margin of the combined classifier)

£'=1




AdaBoost and Margin Distribution

Theorem 5

Suppose the base learning algorithm, when called by
AdaBoost, generates classifiers with weighted training errrors
&,--»&7. Then forany 6

T
Puys D (1) <01<2 T [&  (1—¢)"’
t=1

Ve l(1—¢, )"’ <10, therefore

Puy-~slf (x) < 8] decreases exponentially fast
with T




