
1

Boosting the Margin

Oleg Ivanov
Min Chi

Ensemble methods
• Bagging reduces the expected error by decreasing the variance

• Boosting reduces the expected error by decreasing the variance 
(can be increased (?)) and  the bias

• Train errors can be driven to 0

• But the test (generalization) errors do not show overfitting
(paradox ?) 
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MarginMargin
Ensemble classifier prediction = weighted vote over a set of base 
classifiers

Margin – difference between the weight assigned to the correct label 
and the maximal weight assigned to any incorrect label

Margin distribution graphs – margin for a set of examples

Boosting and bagging increase the margins

Boosting is especially useful for examples with small initial margins

Margin & test errorMargin & test error
Prove that achieving a large margin on the training set results in an 
improved bound on the generalization (test) error 

The bound does not depend on the number of classifiers that are 
combined in the vote

The bound is not asymptotic
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DefinitionsDefinitions
• Output: {-1, 1}

• H the space of base classifiers

• mapping from an instance space X to {-1, +1}

• The examples are generated independently at random according to 
some fixed but unknown distribution D over X × {-1, +1}

• The training data is a list of m pairs:
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• the majority vote rule that is associated with f gives the wrong    
prediction on the example (x,y) only if yf(x) ≤ 0

• the margin of an example (x,y) in this case is simply yf(x)

• the following two theorems state that with high probability, the 
generalization error of any majority vote classifier can be bounded in 
terms of the number of training examples with margin below a 
threshold θ, plus an additional term which depends on the number of 
training examples, some complexity measure of H, and the 
threshold θ
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Theorem 1 (finite classifier space)Theorem 1 (finite classifier space)

• Let D be a distribution over X × {-1, +1}, and let S be a sample of m 
examples chosen independently at random according to D. Assume 
that the base-classifier space H is finite, and let δ>0. Then with 
probability at least 1- δ over the random choice of the training set S, 
every weighted average function                 satisfies the following 
bound for all θ>0:
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Theorem 1 Theorem 1 -- proofproof
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Theorem 1 Theorem 1 -- proofproof
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Theorem 1 Theorem 1 -- proofproof
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Theorem 1 Theorem 1 -- proofproof
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Theorem 1 Theorem 1 -- proofproof

Then combining Equations (2), (3), (4), (5) and (6), we get that, 
with probability at least 1-δ, for every θ>0 and every N≥1:
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Theorem 1 Theorem 1 -- proofproof
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Theorem 1 Theorem 1 -- discussiondiscussion

Theorem 2 (infinite classifier space)Theorem 2 (infinite classifier space)
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AdaBoostAdaBoost and Margin Distribution and Margin Distribution 
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AdaBoostAdaBoost and Margin Distribution and Margin Distribution 
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