CS 3750 Machine Learning Lecture 26

Ensemble methods. Bagging and Boosting

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 3750 Machine Learning

Administrative announcements

- Term projects:
 - Reports due on Friday, December 5 at 2pm.
 - 15 (12+3) minutes presentations at the same time

Ensemble methods

Mixture of experts

 Different 'base' models (classifiers, regressors) cover different parts of the input space

• Committee machines:

- Train several 'base' models on the complete input space, but on slightly different train sets
- Combine their decision to produce the final result
- Goal: Improve the accuracy of the 'base' model

- Methods:

- Bagging
- Boosting
- Stacking (not covered)

CS 3750 Machine Learning

Bagging (Bootstrap Aggregating)

• Given:

- Training set of *N* examples
- A class of learning models (e.g. decision trees, neural networks, ...)

Goal:

Improve the accuracy of one model by using its multiple copies

Motivation:

- Recall: Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method
- Train multiple models on different samples and average their predictions

Bagging algorithm

Training

- In each iteration t, t=1,...T
 - Randomly sample with replacement *N* samples from the training set
 - Train a chosen "base model" (e.g. neural network, decision tree) on the samples

Test

- For each test example
 - Start all trained base models
 - Predict by combining results of all T trained models:
 - **Regression:** averaging
 - Classification: a majority vote

When Bagging Works

• Expected error= Bias+Variance

Expected error is the expected discrepancy between the estimated and true function

$$E\left[\left(\hat{f}(X) - E\left[f(X)\right]\right)^{2}\right]$$

Bias is squared discrepancy between averaged estimated and true function

$$\left(E\left[\hat{f}(X)\right]-E\left[f(X)\right]\right)^{2}$$

 Variance is expected divergence of the estimated function vs. its average value

$$E\left[\left(\hat{f}(X) - E\left[\hat{f}(X)\right]\right)^{2}\right]$$

CS 3750 Machine Learning

When Bagging works? Under-fitting and over-fitting

• Under-fitting:

- High bias (models are not accurate)
- Small variance (smaller influence of examples in the training set)

Over-fitting:

- Small bias (models flexible enough to fit well to training data)
- Large variance (models depend very much on the training set)

Averaging decreases variance

Example

- Assume we measure a random variable x with a $N(\mu, \sigma^2)$ distribution
- If only one measurement x_i is done,
 - The expected mean of the measurement is μ
 - Variance is $Var(x_1) = \sigma^2$
- If random variable x is measured K times $(x_1,x_2,...x_k)$ and the value is estimated as: $(x_1+x_2+...+x_k)/K$,
 - Mean of the estimate is still μ
 - But, variance is smaller:

$$- [Var(x_1) + ... Var(x_k)]/K^2 = K\sigma^2 / K^2 = \sigma^2 / K$$

· Observe: Bagging is a kind of averaging!

CS 3750 Machine Learning

When Bagging works

- Main property of Bagging (proof omitted)
 - Bagging decreases variance of the base model without changing the bias!!!
 - Why? averaging!
- Bagging typically helps
 - When applied with an over-fitted base model
 - High dependency on actual training data
- It does not help much
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting. Theoretical foundations.

- PAC: Probably Approximately Correct framework
 - (ε - δ) solution
- PAC learning:
 - Learning with the pre-specified accuracy ε and confidence δ
 - the probability that the misclassification error is larger than ϵ is smaller than δ

$$P(ME(c) > \varepsilon) \le \delta$$

- Accuracy (E): Percent of correctly classified samples in test
- Confidence (δ): The probability that in one experiment some accuracy will be achieved

CS 3750 Machine Learning

PAC Learnability

Strong (PAC) learnability:

 There exists a learning algorithm that efficiently learns the classification with a pre-specified accuracy and confidence

Strong (PAC) learner:

- A learning algorithm *P* that given an arbitrary
 - classification error ε (<1/2), and
 - confidence δ (<1/2)
- Outputs a classifier
 - With a classification accuracy $> (1-\epsilon)$
 - A confidence probability $> (1 \delta)$
 - And runs in time polynomial in $1/\delta$, $1/\epsilon$
 - Implies: number of samples N is polynomial in $1/\delta$, $1/\epsilon$

Weak Learner

Weak learner:

- A learning algorithm (learner) W
 - Providing classification accuracy $>1-\varepsilon_0$
 - With probability >1- δ_0
- For some fixed and uncontrollable
 - classification error ε_0 (<1/2)
 - confidence δ_o (<1/2)

on an arbitrary problem

CS 3750 Machine Learning

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - On any problem it is better that a random guess (50 %) with confidence higher than 50 %
- Question:
 - Is problem also PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ε-δ) accuracy?
- Why is important?
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve pre-specified accuracy (confidence)?

Weak=Strong learnability!!!

• Proof due to R. Schapire

An arbitrary $(\varepsilon-\delta)$ improvement is possible

Idea: combine multiple weak learners together

- Weak learner W with confidence δ_0 and maximal error ϵ_0
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training different weak learners on slightly different datasets

Boosting accuracy

Training

- Sample randomly from the distribution of examples
- Train hypothesis H_1 on the sample
- Evaluate accuracy of H_1 on the distribution
- Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2 .
- Train H_3 on samples from the distribution where H_1 and H_2 classify differently

Test

- For each example, decide according to the majority vote of H_1 , H_2 and H_3

CS 3750 Machine Learning

Theorem

- If each hypothesis has an error ε_o , the final classifier has error $< g(\varepsilon_o) = 3 \varepsilon_o^2 2\varepsilon_o^3$
- Accuracy improved !!!!
- Apply recursively to get to the target accuracy !!!

Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- The key result: we can improve both the accuracy and confidence
- Problems with the theoretical algorithm
 - A good (better than 50 %) classifier on all problems
 - We cannot properly sample from data-distribution
 - The method requires large training set
- Solution to the sampling problem:
 - Boosting by sampling
 - AdaBoost algorithm and variants

CS 3750 Machine Learning

AdaBoost

- AdaBoost: boosting by sampling
- Classification (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)
- Regression (Drucker; 1997)
 - AdaBoostR

AdaBoost

• Given:

- A training set of N examples (attributes + class label pairs)
- A "base" learning model (e.g. a decision tree, a neural network)

• Training stage:

- Train a sequence of T "base" models on T different sampling distributions defined upon the training set (D)
- A sample distribution D_t for building the model t is constructed by modifying the sampling distribution D_{t-1} from the (t-1)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)
- Application (classification) stage:
 - Classify according to the weighted majority of classifiers

AdaBoost algorithm

Training (step t)

• Sampling Distribution D_{t}

 $D_{t}(i)$ - a probability that example i from the original training dataset is selected

$$D_1(i) = 1 / N$$
 for the first step (t=1)

- Take K samples from the training set D according to D.
- Train a classifier h_t on the samples
- Calculate the error ε_t of \mathbf{h}_t : $\varepsilon_t = \sum_{i:h_t(x_i) \neq y_i} D_t(i)$ Classifier weight: $\beta_t = \varepsilon_t / (1 \varepsilon_t)$
- New sampling distribution

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

AdaBoost classification

- We have T different classifiers h,
 - weight w_t of the classifier is proportional to its accuracy on the training set

$$w_{t} = \log(1/\beta_{t}) = \log((1-\varepsilon_{t})/\varepsilon_{t})$$
$$\beta_{t} = \varepsilon_{t}/(1-\varepsilon_{t})$$

Classification:

For every class j=0,1

- Compute the sum of weights w corresponding to ALL classifiers that predict class j;
- Output class that correspond to the maximal sum of weights (weighted majority)

$$h_{final}(\mathbf{x}) = \arg \max_{j} \sum_{t:h_{t}(\mathbf{x})=j} w_{t}$$

Two-Class example. Classification.

- Classifier 1 "yes" 0.7
- Classifier 2 "no" 0.3
- Classifier 3 "no" 0.2
- Weighted majority "yes"

0.7 - 0.5 = +0.2

• The final choose is "yes" + 1

CS 3750 Machine Learning

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on "more and more difficult" examples
- · Boosting can:
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)
- Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting
- Proofs and theoretical explanations in readings

