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SVM

n datapoints xi

Two classes: yi= +1 and yi = -1
We search for hyperplane separating the classes
Hyperplane not unique – want max-margin hyperplane
Learning is quadratic optimization of Lagrange parameters 

for all points except those on boundary – the support 
vectors
Classification of new datapoint (bias weight in)
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Kernels

The dot product         is a distance measure
precisely cosine of angle if normalized 

Kernels can be seen as distance measures
Or conversely express degree of similarity 

Design criteria - we want kernels to  be
valid – Satisfy Mercer condition of positive semidefiniteness
good – embody the “true similarity” between objects
appropriate – generalize well
efficient – the computation of k(x,x’) is feasible

NP-hard problems abound with graphs

xxT



3

Concept classes and good kernels

Valid - Mercer positive semidefiniteness condition
Concept – mapping 
Concept class – set of concepts
Kernel is complete iff it is “fine-grained” enough

Kernel is correct (wrt a concept class C) iff

i.e. if an SVM (with perfect separation) can be learned with it
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Appropriate & computable kernels

We want kernels that generalize well
Matching kernel

always correct, always complete, mostly useless 

Correctness & completeness ~ training performance
Appropriateness ~ testing (generalization) perf.
We want realistically computable kernels:

is great
but solves the whole problem 
can be NP-hard or non-computable
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Design of kernels

Two approaches to kernel design
Model driven

encodes knowledge about domain
From generative models: Fisher kernel
Diffusion kernel – local relationships
Ex. : Hidden Markov models DNA sequences, speech

Syntax driven
exploits structure of problem – special case or parameter
Ex.: strings, trees, terms

Model based kernels – Fisher kernel

Knowledge about the objects to classify in form of a generative 
probability model
Fisher information matrix

sensitivity of probability to parameters at x ~ variance
Cramer-Rao bound:

Fisher kernel

performs well if class is latent variable in the model
used widely for sequence data (HMM)
I-1 is sometimes dropped (also drops requirement on the matrix)
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Matrix exponents and diffusion kernels

Instance space has local relations
Generator matrix H, kernel matrix
Key identity is Taylor expansion
So
H is symmetric is positive semidefinite
β - bandwidth parameter

as β grows, local structure encoded by H propagates
results in global structure

Diffusion comes from MRF dynamics
covariance of the field at time t is 
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The Convolution kernel

Syntax-driven kernel – defined (recursively) on structure
Idea is compositional semantics – define semantics of 
object as function of their parts’ semantics
Let               be the objects of X and let
be tuples of parts of x, x’ , let R be ‘is composed of’
Then convolution kernel is given by

Can be adapted to virtually everything
But it’s a long way to go

Xxx ∈', DXXxx ,...,', 1∈

∑ ∏
−− ∈∈

=
)'('),( 11

)',()',(
xRxxRx d

dddconv xxkxxk



6

A String kernel

Similarity of strings: common subsequences
Example: cat and cart

Common: ‘c’, ‘a’, ‘t’, ‘ca’, ‘at’, ‘ct’, ‘cat’
Exponential penalty for longer gaps: λ
Result: k(‘cat’,’cart’) = 2 λ7 + λ5 + λ4 + 3λ2

Feature transformation φ(s):
s[i] -- subsequence of s induced by index set i
l(i) = max(i) – min(i) – length of i in s

The kernel is given by
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Another string kernel

A sliding window kernel for DNA sequences
Classification: inition site or not

inition site – codon where translation begins

Locality-improved kernel

results competitive with previous approaches
probabilistic: replace xi with log p(xi=init |xi-1) (“bigram”)
parameter d1 – weight on local match
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kernels

We can encode a tree as a string by traversing in 
preorder and parenthesizing
Then we can use a string kernel

A

EB

C D

tag(T)= (A(B(C)(D))(E))

• Tag can be computed in loglinear time
• Uniquely identifies the tree
• Substrings correspond to subset trees
• Balanced substrings correspond to subtrees

Tree kernels

Syntax driven kernel
V1, V2 are sets of vertices of T1, T2

δ+(v) is the set of children of v, δ+(v,j) is the j-th child
S(v1,v2) is the number of isomorphic subtrees of v1,v2

S(v1,v2) = 1 if labels match and no children
S(v1,v2) = 0 if labels don’t match
otherwise

This has O(|V1||V2|) complexity
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Graphs

Complexity a more important issue – things get NP-hard
If you can do many walks through nodes labeled by the same names in 
two graphs, they are similar
This process can be modeled as diffusion: Model driven kernel

Take negative Laplacian of adjacency matrix for the generator
Hij = 1 if  (vi,vj) is an edge
Hij = |N(vi) | if vi = vj
Hij = 0 otherwise

Or directlySyntactic kernel based on walks
Construct product graph
Count the 1-step walks that you do in both graphs: Ex

1

2-step walks: Ex
2, 3-step walks Ex

3 , ….
Discounting for convergence
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Applications and conclusions

Kernel methods are popular and useful
Computational biology: gene identification, phylogenetic profiles 
clustering, genus prediction, 
Computational (bio)chemistry: molecule shape prediction from 
NMR spectrum, drug activity prediction
Natural language processing: parse tree similarity, n-gram 
kernels, 

Syntactic and information-theoretic approach
Design your own kernels for any type of object you deal with

Intuition: measure similarity between objects
Verify that your kernel is good and appropriate
Some (graph) problems are hard 

tradeoff between fast and appropriate kernels
SVM implementations exist that allow user-definable kernels

www.kernel-machines.org
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Thank you!

Questions welcome!


