The kernels for life, universe
and everything

Tomas Singliar

CS3750 Advanced Machine Learning

Overview

SVM
Design requirements and considerations
Design approaches

Examples

o String kernels
o Tree kernels
o Graph kernels

Conclusion and questions

SVM

n datapoints x;

Two classes: y=+17 and y, = -1

We search for hyperplane separating the classes

Hyperplane not unique — want max-margin hyperplane
Learning is quadratic optimization of Lagrange parameters «;

o, =0 forall points except those on boundary — the support
vectors

Classification of new datapoint (bias weight in)

y=sgn(w'x)= sgn(z a,.yl.(x,.Tx)J

ieSV

Kernels

The dot product x'x is a distance measure
o precisely cosine of angle if normalized

Kernels can be seen as distance measures
o Or conversely express degree of similarity

Design criteria - we want kernels to be
o valid — Satisfy Mercer condition of positive semidefiniteness
o good — embody the “true similarity” between objects
o appropriate — generalize well
o efficient — the computation of k(x,x’) is feasible
NP-hard problems abound with graphs

Concept classes and good kernels

Valid - Mercer positive semidefiniteness condition

Concept — mapping c: X —{0,1}

Concept class — set of concepts

Kernel is complete iff it is “fine-grained” enough
Ve k(x,)=k(x',) = c(x)=c(x")

Kernel is correct (wrt a concept class C) iff
Vee(3da,: Zaik(xl.,x) >0 c(x)

i.e. if an SVM (with perfect separation) can be learned with it

Appropriate & computable kernels

We want kernels that generalize well

Matching kernel *(x,x")=4d(x,x")

o always correct, always complete, mostly useless
Correctness & completeness ~ training performance
Appropriateness ~ testing (generalization) perf.

We want realistically computable kernels:
o k(x,x")=(c(x) ==c(x")) s great

o but solves the whole problem

o can be NP-hard or non-computable

Design of kernels

Two approaches to kernel design

o Model driven
encodes knowledge about domain
From generative models: Fisher kernel
Diffusion kernel — local relationships
Ex. : Hidden Markov models DNA sequences, speech
o Syntax driven
exploits structure of problem — special case or parameter
Ex.: strings, trees, terms

Model based kernels — Fisher kernel

Knowledge about the objects to classify in form of a generative
probability model

Fisher information matrix
o sensitivity of probability to paramg‘gers at x ~ variance
o Cramer-Rao bound: var(x;) =1

U,=V,logP(x|6) 1= <UxeT >P<x\9)

Fisher kernel _—
kp(x,x")=U_1"U,
performs well if class is latent variable in the model
used widely for sequence data (HMM)
I-" is sometimes dropped (also drops requirement on the matrix)

Matrix exponents and diffusion kernels

Instance space has local relations
Generator matrix H, kernel matrix kK = ¢””
Key identity is Taylor expansion ¢ =1lim 3. L,

g _ . N BIHT e im0 B
So e ~lim 2, ™
H is symmetric — ¢ is positive semidefinite
B - bandwidth parameter
o as B grows, local structure encoded by H propagates
o results in global structure

Diffusion comes from MRF dynamics
o covariance of the field at time t is

Cov(t) = o’e*™

The Convolution kernel

Syntax-driven kernel — defined (recursively) on structure

Idea is compositional semantics — define semantics of
object as function of their parts’ semantics

Let x,x'e X be the objects of X and let x,x' e X,,... X,
be tuples of parts of x, x’, let R be ‘is composed of’
Then convolution kernel is given by
kconv(x’x'): Z de(xd’xd')
xeR' (x)x'eR7M(x") d
Can be adapted to virtually everything
But it's a long way to go

A String kernel

Similarity of strings: common subsequences
Example: cat and cart

o Common: c’, ‘a’, ‘t, ‘ca’, ‘at’, ‘ct’, ‘cat’

o Exponential penalty for longer gaps: A

o Result: k(‘cat’,’cart’) = 2 A7 + A5 + A* + 3A?
Feature transformation ¢(s):

o sfi] -- subsequence of s induced by index set i
o I(i) = max(i) — min(i) — length of jin s

D p,(s)= 2 A"

iu=s[i]

The kernel is given by

k(s.0)= D 0,()p, ()= > SO

uex" uex"iu=s[i] ju=s[j]

Another string kernel

A sliding window kernel for DNA sequences

Classification: inition site or not
o inition site — codon where translation begins
Locality-improved kernel

i @ . 4,
k,.(x,x')=(Zw‘/k5(x,+j,x'”j)J k(x,x'") = (Z[k,.(x,x’)J

results competitive with previous approaches
probabilistic: replace x; with log p(x;=init |x,,) (“bigram”)
parameter d, — weight on local match

A kernels

= We can encode a tree as a string by traversing in
preorder and parenthesizing

= Then we can use a string kernel

\ » Tag can be computed in loglinear time
+ Uniquely identifies the tree
» Substrings correspond to subset trees
* Balanced substrings correspond to subtrees

‘ Tree kernels

= Syntax driven kernel
= V, V, are sets of vertices of T, T,
= O*(v) is the set of children of v, 8*(v,j) is the j-th child
= S(v4,V,) is the number of isomorphic subtrees of v,,v,
o S(v4,vp) = 1if labels match and no children
o S(v4,vp) = 0 if labels don’t match
o otherwise

157 ()l

KTL.T) = Y 8(.m) SOy = [J0+S0/),805,1)

viel,v,€l;

= This has O(|V,||V,|) complexity

Graphs

Complexity a more important issue — things get NP-hard

If you can do many walks through nodes labeled by the same names in
two graphs, they are similar

This process can be modeled as diffusion: Model driven kernel
o Take negative Laplacian of adjacency matrix for the generator

=) Hij =1 if (vi,vj) is an edge
a Hij =|N(v) | if v, = \
o H;=0 otherwise
H
K =e’

Or directlySyntactic kernel based on walks

o Construct product graph

o Count the 1-step walks that you do in both graphs: E,!
a 2-step walks: E,?, 3-step walks E2,

; : V| o
Discounting for convergence n
L6.G)= X Ak

i,j=1_n=0

Applications and conclusions

Kernel methods are popular and useful

o Computational biology: gene identification, phylogenetic profiles
clustering, genus prediction,

o Computational (bio)chemistry: molecule shape prediction from
NMR spectrum, drug activity prediction

o Natural language processing: parse tree similarity, n-gram
kernels,

Syntactic and information-theoretic approach
Design your own kernels for any type of object you deal with
o Intuition: measure similarity between objects
o Verify that your kernel is good and appropriate
o Some (graph) problems are hard
tradeoff between fast and appropriate kernels
SVM implementations exist that allow user-definable kernels
o www.kernel-machines.org

43

Thank you!

Questions welcome!

