The kernels for life, universe and everything

Tomas Singliar

CS3750 Advanced Machine Learning

Overview

- SVM
- Design requirements and considerations
- Design approaches
- Examples
 - String kernels
 - Tree kernels
 - Graph kernels
- Conclusion and questions

SVM

- n datapoints x_i
- Two classes: y_i= +1 and y_i = -1
- We search for hyperplane separating the classes
- Hyperplane not unique want max-margin hyperplane
- Learning is quadratic optimization of Lagrange parameters α_i
- $lpha_{i}=0$ for all points except those on boundary the *support* vectors
- Classification of new datapoint (bias weight in)

$$y = \operatorname{sgn}(\mathbf{w}^T \mathbf{x}) = \operatorname{sgn}\left(\sum_{i \in SV} \alpha_i y_i(\mathbf{x}_i^T \mathbf{x})\right)$$

Kernels

- The dot product x^Tx is a distance measure
 - precisely cosine of angle if normalized
- Kernels can be seen as distance measures
 - Or conversely express degree of similarity
- Design criteria we want kernels to be
 - valid Satisfy Mercer condition of positive semidefiniteness
 - good embody the "true similarity" between objects
 - appropriate generalize well
 - \Box efficient the computation of k(x,x') is feasible
 - NP-hard problems abound with graphs

Concept classes and good kernels

- Valid Mercer positive semidefiniteness condition
- Concept mapping $c: X \to \{0,1\}$
- Concept class set of concepts
- Kernel is complete iff it is "fine-grained" enough

$$\forall c : k(x,\cdot) = k(x',\cdot) \Rightarrow c(x) = c(x')$$

Kernel is correct (wrt a concept class C) iff

$$\forall c \in C \exists \alpha_i : \sum_i \alpha_i k(x_i, x) \ge 0 \Leftrightarrow c(x)$$

i.e. if an SVM (with perfect separation) can be learned with it

Appropriate & computable kernels

- We want kernels that generalize well
- Matching kernel $k(x,x') = \delta(x,x')$
 - always correct, always complete, mostly useless
- Correctness & completeness ~ training performance
- Appropriateness ~ testing (generalization) perf.
- We want realistically computable kernels:
 - k(x, x') = (c(x) == c(x')) is great
 - but solves the whole problem
 - can be NP-hard or non-computable

Design of kernels

- Two approaches to kernel design
 - Model driven
 - encodes knowledge about domain
 - From generative models: Fisher kernel
 - Diffusion kernel local relationships
 - Ex.: Hidden Markov models DNA sequences, speech
 - Syntax driven
 - exploits structure of problem special case or parameter
 - Ex.: strings, trees, terms

Model based kernels – Fisher kernel

- Knowledge about the objects to classify in form of a generative probability model
- Fisher information matrix
 - □ sensitivity of probability to parameters at x ~ variance
 - □ Cramer-Rao bound: $var(x_i) \ge I_{ii}^{-1}$

$$U_{x} = \nabla_{\theta} \log P(x \mid \theta) \qquad I = \left\langle U_{x} U_{x}^{T} \right\rangle_{P(x \mid \theta)}$$

Fisher kernel

$$k_{F}(x, x') = U_{x}^{T} I^{-1} U_{x'}$$

- performs well if class is latent variable in the model
- used widely for sequence data (HMM)
- I-1 is sometimes dropped (also drops requirement on the matrix)

Matrix exponents and diffusion kernels

- Instance space has local relations
- Generator matrix H, kernel matrix $K = e^{\beta H}$
- Key identity is Taylor expansion $e^{x} = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{x^{i}}{i!}$ So $e^{\beta H} = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{\beta^{i} H^{i}}{i!}$
- H is symmetric $\Rightarrow e^{\beta H}$ is positive semidefinite
- β bandwidth parameter
 - \Box as β grows, local structure encoded by H propagates
 - results in global structure
- Diffusion comes from MRF dynamics
 - covariance of the field at time t is

$$Cov(t) = \sigma^2 e^{2\alpha tH}$$

The Convolution kernel

- Syntax-driven kernel defined (recursively) on structure
- Idea is compositional semantics define semantics of object as function of their parts' semantics
- Let $x, x' \in X$ be the objects of X and let $\vec{x}, \vec{x'} \in X_1, ..., X_n$ be tuples of parts of x, x', let R be 'is composed of'
- Then convolution kernel is given by

$$k_{conv}(x, x') = \sum_{\vec{x} \in R^{-1}(x), \vec{x'} \in R^{-1}(x')} \prod_{d} k_d(x_d, x_d')$$

- Can be adapted to virtually everything
- But it's a long way to go

A String kernel

- Similarity of strings: common subsequences
- Example: cat and cart
 - □ Common: 'c', 'a', 't', 'ca', 'at', 'ct', 'cat'
 - Exponential penalty for longer gaps: λ
 - □ Result: $k(\text{`cat', `cart'}) = 2 \lambda^7 + \lambda^5 + \lambda^4 + 3\lambda^2$
- Feature transformation φ(s):
 - □ s[i] -- subsequence of s induced by index set i
 - \Box I(i) = max(i) min(i) length of i in s
 - $\varphi_{u}(s) = \sum_{i:u=s[i]} \lambda^{l(i)}$
- The kernel is given by

$$k_n(s,t) = \sum_{u \in \Sigma^n} \varphi_u(s) \varphi_u(t) = \sum_{u \in \Sigma^n} \sum_{i: u = s[i]} \sum_{j: u = s[j]} \lambda^{l(i) + l(j)}$$

Another string kernel

- A sliding window kernel for DNA sequences
- Classification: inition site or not
 - □ inition site codon where translation begins
- Locality-improved kernel

$$k_{i}(x, x') = \left(\sum_{j=-l}^{l} w_{j} k_{\delta}(x_{i+j}, x'_{i+j})\right)^{d_{1}} \qquad k(x, x') = \left(\sum_{j=-l}^{n-l} k_{i}(x, x')\right)^{d_{2}}$$

- results competitive with previous approaches
- probabilistic: replace x_i with log p(x_i=init |x_{i-1}) ("bigram")
- parameter d₁ weight on local match

- We can encode a tree as a string by traversing in preorder and parenthesizing
- Then we can use a string kernel

tag(T) = (A(B(C)(D))(E))

- · Tag can be computed in loglinear time
- · Uniquely identifies the tree
- Substrings correspond to subset trees
- · Balanced substrings correspond to subtrees

Tree kernels

- Syntax driven kernel
- V₁, V₂ are sets of vertices of T₁, T₂
- $\delta^+(v)$ is the set of children of v, $\delta^+(v,j)$ is the j-th child
- S(v₁,v₂) is the number of isomorphic subtrees of v₁,v₂
 - \Box S(v₁,v₂) = 1 if labels match and no children
 - \Box S(v₁,v₂) = 0 if labels don't match
 - otherwise

$$k(T_1, T_2) = \sum_{v_1 \in V_1, v_2 \in V_2} S(v_1, v_2) \qquad S(v_1, v_2) = \prod_{k=1}^{|\mathcal{S}^+(v_1)|} (1 + S(\mathcal{S}(v_1, j), \mathcal{S}(v_2, j)))$$

This has O(|V₁||V₂|) complexity

Graphs

- Complexity a more important issue things get NP-hard
- If you can do many walks through nodes labeled by the same names in two graphs, they are similar
- This process can be modeled as diffusion: Model driven kernel
 - Take negative Laplacian of adjacency matrix for the generator

```
\begin{array}{ll} \square & H_{ij} = 1 & \text{if } (v_i, v_j) \text{ is an edge} \\ \square & H_{ij} = |N(v_i)| & \text{if } v_i = v_j \\ \square & H_{ij} = 0 & \text{otherwise} \end{array}
```

- $K = e^{\beta H}$
- Or directlySyntactic kernel based on walks
 - Construct product graph
 - Count the 1-step walks that you do in both graphs: E_x¹
 - 2-step walks: E_x², 3-step walks E_x³,
 - Discounting for convergence

$$k_{\times}(G_1, G_2) = \sum_{i,j=1}^{|V_{\times}|} \left[\sum_{n=0}^{\infty} \lambda_i E_{\times}^n \right]$$

Applications and conclusions

- Kernel methods are popular and useful
 - Computational biology: gene identification, phylogenetic profiles clustering, genus prediction,
 - Computational (bio)chemistry: molecule shape prediction from NMR spectrum, drug activity prediction
 - Natural language processing: parse tree similarity, n-gram kernels,
- Syntactic and information-theoretic approach
- Design your own kernels for any type of object you deal with
 - Intuition: measure similarity between objects
 - Verify that your kernel is good and appropriate
 - Some (graph) problems are hard
 - tradeoff between fast and appropriate kernels
- SVM implementations exist that allow user-definable kernels
 - www.kernel-machines.org

Thank you!Questions welcome!