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Linear PCA

M
Given a set of centered observations i.e. )’ x, =0

k=1

Diagonalization of covariance matrix C
1 M
C=—)> xx'
TR (1)
via the solution of eigenvalue equation

Av=Cv where A>0 and ve RY\{0} (2)
therefore

1 & T
Cv=—>) x.x,v
M; J




Linear PCA

since (xx")v=(x-v)x derivation (?)

A dot product formulation
1 M
Cv = ﬁ; (x;-v)x; =Av  (x,-v) - scalar

Therefore all solutions V lie in the span of (x,... x,,)

And eigenvalue equation for each data point:

A(x, -v)=(x,-Cv) Vk=1,....M

Non-Linear PCA

F — feature space, related to the input space by
a non-linear map @

O®:R" > F
M
Given a set of centered observations i.e. > ®(x,) =0

k=1
Covariance matrix Cin F




Non-Linear PCA

Again we have to solve the eigenvalue equation

AV = CV where A>0 and V e F\{0}

By the analogy with the linear PCA the solutions V lie
in the span of non-linear input mappings

(@ (x)... @ (x,,))

Non-Linear PCA

Eigenvalue equation for each data point:

A(D(x,)-V)=(D(x,)-CV) (3)
Vk=1,....M

Since V are linearly related to inputs D(x,)
we can define coefficients o

M
V=> ad(x) (4)
i=1
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Non-Linear PCA

Combining (3), (4) and defining matrix K
(macro step !):

Kg/ = ((D(xi)'q)(xj))
We get:
MAia = Ka. (4)

K is a positive semidefinite > diagonalize it to
get the solutions for the equation (4)

= JEE
Non-Linear PCA

a's should be normalized
If 4, is the first eigenvalue>0 then the
normalized vectors should satisfy:
VE V=1 Yk=p,...,.M
M
Using equation (3) 7 =) a,®(x,)
i=1

. . e M
Normalization condition for a”,...,a

S ata (@(x,) D (x,) = 1

i,j=1




Non-Linear PCA

M
k _k _ —
Zlaiaj(cb(xi)-cb(xj))—l k=p,....M
1,]=
M
aikale.jzl
=1 -

(o -Ka*) =1

2, (e -a’)=1 the normalization condition

Non-Linear PCA

Extracting non-linear principal components
Let X be a test point, ®(x) is image of X in F

V'@ (x)) = Z af (®(x,) (x))




Non-Linear PCA

Three steps of non-linear PCA:
1. Compute the dot product matrix K
K; =(@(x;) @(x,))
2.  Compute Eigenvectors of K and normalize
themin F
A, (0 -af)=1
3. Compute projections of a test point onto
the Eigenvectors

PC(x)= (V" @(x)) = Z o (®(x,) @ (x))

BIG PROBLEM (!)
makes non-linear PCA

N O n - L i n ea r almost impracticable

Problem:
@ can be a map into high-dimensional space F

Example: polynomial map of degree 5 of an
image 16X16 would yield dimensionality 1010
Computing dot product in such a space would
be too expensive (!)
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Kernel PCA

Solution:
kernel PCA where dot products can be
represented using the kernel function

k(x,y) = (P(x)- D(y))

This allows to compute (D (x)-DP(y))
without explicitly mapping x into F

Kernel function

How does a kernel work:

Suppose ®(x) is a quadratic basis function and
i the input vector of dimensionality

then the full quadratic expansion is...




1 _~ constant term
VZx,
Vix, linear terms
VZx,
x|
x pure quadratic terms
X,
PO aax
V2 x,x,
‘\/Z_xI X4 d .
VTx,x, quadratic cross-terms
JZx,x,
: Number of terms =(d+2)(d+1)/2
\/Z_x i-1Xyg
1 1 [1 i } 1
V2 x, N2y, +
Vo vy, > 2xy,
: : i=1
'\/2_xd '\/2_yd +
x} vy d
x; v3 > xly!
: : i=1
xg ¥ +
D (x)e®(y)=| ¢ .

2x,x, V2y,y,
V2x,x, V2y,y;,

2x,x, V2y,y, d

d
V2 x,x, N2y, y, 2 2%, Xy,

i=1 j=i+1

2x,x, V2x,xy,

So...

V2x, %, N2y, Yy




Kernel function

d d
DO(x) D(P) =1+ Y 2,3, + 3 2057 + > 2 25,0,
i=1 i=1

i=1 j=i+l

Let’s consider another function of x and y:

(x-y+1)°

Kernel function

(x-y+1)" =
x-y)Y4+2x-y+1l=
(x-y) y

d 2 d
(Zw,} +2) xy+1=
d’:1 . i=1 )
ZZ X ViX; Y +22xiyl. +1=
==l i1

> () +22, D, xyy;+2) xy,+1= O(x) - D(y)(!)

i=l j=i+l i=1




Kernel function

Definition of a kernel function:
k(x,y)=(0(x) - D(y))

So (x-y+ l)2 is the kernel function of x and y
given @() is the mapping function into quadratic
feature space F

Polynomial kernel function of degree p:

(x-y+17f

Kernel function

Polynomial kernel functions
and number of terms

Polynomial #terms |#terms Kernel |# terms # terms
aw d=100 kernel d=100

Quadratic /2 5000  |(cy+l]  d2 50

Cubic a°/6 166,000 (ox- y+1)3 di2 50

Quartic 24 | ~4,000,000 |(x-p+D)T a2 50




Other kernel functions

Radial basis

[x=yI’
k(x,y) = exp| 21
(x, ) eXp( 252

Neural Network type

k(x,y)=tanh((x-y)+b)
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Kernel PCA

Three steps of kernel PCA:

1. Compute the dot product matrix K
using kernel function
Kij = (k(xi?xj))ij

1. Compute Eigenvectors of K and normalize
them

A, (a0 -a*)=1
2.  Compute projections of a test point onto
the Eigenvectors using kernMeI function

kPC , (x) = (Vk D (x)) = Z aikk('xi"x)




Kernel PCA

Properties of kernel PCA:

1. Remains the orthogonal basis
transformation in feature space F

2. The first Q PCs carry more variance than
any other Q PCs

Min MSE of reconstruction

PCs are uncorrelated

The representation entropy is minimized
#PCs can exceed d (input dimensions)

o o A~ ow

ICA

Independent component analysis (ICA)
decomposes the multivariate data ) € R"
into a linear sum of statistically independent
components:

N
y= inai = Ax
i=1

where X; is the basis coefficient (source) and a;
is the basis vector
The task is to estimate parameters A from data




.
ICA

The estimation of the data model of independent
component analysis is usually performed by
formulating an objective function (contrast
function) and then minimizing or maximizing it.

Therefore:

ICA = Contrast Function + Optimization

F-correlation

In the paper by Bach and Jordan (2001)
“Kernel ICA”, a new contrast function, based
on F-correlation, was developed

This new function is based on the
non-linear function space not on just one
function




F-correlation

F-correlation — measures dependence
between x, and x, using correlation

of functions of the variables f,(x,) and f,(x,)
for f,and f, belonging to some space F

pr = max_corr(£,(x), /()
cov( f,(x)), f,(x,))

= max
fi-freF (Val‘fl(xl))l/z(var fz(xz))l/z

Pr

F-correlation

If o= 0 and Fis large enough then x, and x, are independent
Large enough?
If F contains the Fourier basis i.e. all functions of the form:

X e ™
where @ € R
How to make this tractable?
“kernelize” F-correlation

“kernelized” F-correlation is equivalent to canonical correlation




Canonical Correlation

Given two multivariate random variables X, € RN‘ and X, € RN2

CCA finds the pair of directions W, and W, with maximum correlation.

p(x),%,) = maxcorr(w{xl,ngz)
Wi,W,)
'C
w LW,
1 1
R & (T 2
(w; Ciyw; )2 (w, Cyw, )2

=max

wy,

C11 C12
Where C = is the covariance matrix of (x4, X,)
C21 sz

Canonical Correlation

The CCA reduces to the generalized eigenvalue problem:

0 C,L\w B C, 0w
c, 0 )\w) Lo c,lw
This problem has N,+N, generalized eigenvalues p

“Kernelized” F-correlation is equivalent to canonical correlation




F———
RKHS

RKHS - reproducing kernel Hilbert spaces
Let K(x, y) be a Mercer kernel on X = R” i.e. a function
for which the Gram matrix

K, =K(x,x,)

1

is positive definite for any collection {x;},_,  in X

Corresponding to any such kernel K there is a map ®
from X to a feature space [ such that

K(x,y) = (D(x), D(»))

RKHS

RKHS is the instantiation of F' with the following property
called “reproducing property”

f(X)=<K(',X),f>
VfeF

If d(x)=K(-,x) is amap from the input space into the RKHS then

<q)(x)>q)(J’)> = <K(a X),K(', J’)> = K(-x: y)




Kernel

Isotropic Gaussian kernel — Mercer kernel with the feature space F
the space of smooth functions

1
lx=yIF)

K(.X,', y) = exp(_
20

Theorem 1

Theorem 1

Let x, and x, be random variables in X = R” Let K, and K, be Mercer
kernels with feature maps @, and @, and feature spaces F|, F, € R
Then the canonical correlation between @ (x,) and ®,(x,)

which is defined as

Pr= max corr(<CD1(xl),f1>,<CD2(x2),f2>)

(fi.12)ebixE

is equal

pr = max corif|(x),[(x,))

(fi1:./2)eFxXE




Theorem 2

Theorem 2

(Independence and F-correlation)

If F is the RKHS corresponding to Gaussian kernel 0 =0
iff x, and x, are independent

Kernelized CCA

T
w, K K,w,

1 1

T2 27 T2 \a

(W Kiw; )2 (w; Kyw, )?

Where K, and K, are Gram matrices of x, and x,
This is equivalent to performing CCA on two vectors with
covariance matrix

]{12 Kl KZ
KZKI K22




Kernelized CCA

The kernelized CCA reduces to the generalized eigenvalue problem:

0 KK,\w) (K} 0w

K. K, 0 \w, P 0 K )\w,

Kernel ICA algorithm

Input:
Data y',y?,...yN
Kernel K(x,y)

1.  Whiten the data

2. Compute Gram matrices K, ,K,,...,K, of the estimated sources
{X1,Xy,...,X\}, Where x=Wy, (Cholesky decomposition)

3. Define 4.(K,....K,)as the first eigenvalue of the generalized
eigenvector equation Ko = ADa

4. Minimize M, (K,....K, )= llogxip(Kl,...,Km) with respect to W
(Stiefel manifold) 2
Output: W




