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Kernel PCA and ICA

Oleg Ivanov
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Linear PCALinear PCA
since xvxvxx T )()( ⋅= derivation (?)

A dot product formulation
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Therefore all solutions    lie in the span of  v )( 1 Mxx K

And eigenvalue equation  for each data point:
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NonNon--Linear PCALinear PCA
F – feature space, related to the input space by      

a non-linear map  
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NonNon--Linear PCALinear PCA
Again we have to solve the eigenvalue equation

By the analogy with the linear PCA the solutions V lie
in the span of non-linear input mappings  

VCV =λ 0≥λ }0{\FV ∈where and

))()(( 1 Mxx ΦΦ K

NonNon--Linear PCALinear PCA

))(())(( VCxVx kk ⋅Φ=⋅Φλ

Eigenvalue equation for each data point:
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NonNon--Linear PCALinear PCA

))()(( jiij xxK Φ⋅Φ=

Combining (3), (4) and defining matrix K 
(macro step !):             

We get:      

αα KM =λ

K is a positive semidefinite diagonalize it to 
get the solutions for the equation (4)        
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NonNon--Linear PCALinear PCA

pλ
should be normalized           s'α

If     is the first eigenvalue>0  then the
normalized vectors should satisfy:  
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NonNon--Linear PCALinear PCA

∑
=

=Φ⋅Φ
M

ji
ji

k
j

k
i xx

1,
1))()((αα

∑
=

=
M

ji
ij

k
j

k
i K

1,
1αα

1)( =⋅ kk Kαα

Mpk ,,K=

1)( =⋅ kk
k ααλ the normalization condition           

NonNon--Linear PCALinear PCA

Extracting non-linear principal components           
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NonNon--Linear PCALinear PCA

Three steps of non-linear PCA:
1. Compute the dot product matrix K

2. Compute Eigenvectors of K and normalize 
them in F

3. Compute projections of a test point onto 
the Eigenvectors        
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NonNon--Linear PCALinear PCA

Problem:
can be a map into high-dimensional space FΦ

Example: polynomial map of degree 5 of an 
image 16X16 would yield dimensionality 1010

Computing dot product in such a space would 
be too expensive (!)  

BIG PROBLEM (!)
makes non-linear PCA
almost impracticable 
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Kernel PCAKernel PCA

Solution:
kernel PCA where dot products can be 
represented using the kernel function

))()((),( yxyxk Φ⋅Φ=

This allows to compute  
without explicitly mapping x into F

))()(( yx Φ⋅Φ

Kernel functionKernel function

How does a kernel work:
Suppose            is a quadratic basis function and
is the input vector of dimensionality 
then the full quadratic expansion is…

)(xΦ
x d
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Kernel functionKernel function
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Let’s consider another function of x and y:
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Kernel functionKernel function

))()((),( yxyxk Φ⋅Φ=

Definition of a kernel function:

So                    is the kernel function of x and y
given           is the mapping function into quadratic 
feature space F

2)1( +⋅ yx
()Φ

pyx )1( +⋅

Polynomial kernel function of degree p:

Kernel functionKernel function
Polynomial kernel functions 

and number of terms          

d/2

d/2

d/2

# terms
kernel

50~4,000,000d4/24Quartic

50166,000d3/6Cubic

505000d2/2Quadratic

# terms
d=100

Kernel# terms
d=100

# termsPolynomial
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Other kernel functionsOther kernel functions
Radial basis          
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Neural Network type           
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Kernel PCAKernel PCA
Three steps of kernel PCA:
1. Compute the dot product matrix K

using kernel function

1. Compute Eigenvectors of K and normalize 
them

2. Compute projections of a test point onto 
the Eigenvectors using kernel function
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Kernel PCAKernel PCA
Properties of kernel PCA:
1. Remains the orthogonal basis 

transformation in feature space F
2. The first Q PCs carry more variance than 

any other Q PCs
3. Min MSE of reconstruction
4. PCs are uncorrelated
5. The representation entropy is minimized
6. #PCs can exceed d (input dimensions)

ICAICA
Independent component analysis (ICA)  
decomposes the multivariate data          
into a linear sum of statistically independent
components:

where xi is the basis coefficient (source) and ai

is the basis vector
The task is to estimate parameters A from data

NRy∈

Axaxy
N

i
ii ==∑
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ICAICA
The estimation of the data model of independent
component analysis is usually performed by
formulating an objective function (contrast 
function) and then minimizing or maximizing it.

Therefore:

ICA = Contrast Function + Optimization

FF--correlationcorrelation

In the paper by Bach and Jordan (2001)
“Kernel ICA”, a new contrast function, based 
on F-correlation, was developed 

This new function is based on the 
non-linear function space not on just one 
function 
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FF--correlationcorrelation

F-correlation – measures dependence 
between x1 and x2 using correlation 
of functions of the variables f1(x1) and f2(x2)
for f1 and f2 belonging to some space F
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21
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xfxf
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ρ

FF--correlationcorrelation
If                 and F is large enough then x1 and x2 are independent
Large enough?
If F contains the Fourier basis i.e. all functions of the form: 

where

0=Fρ

xiex ωa

R∈ω
How to make this tractable?

“kernelize” F-correlation 

“kernelized” F-correlation is equivalent to canonical correlation



15

Canonical CorrelationCanonical Correlation
Given two multivariate random variables                    and  

CCA finds the pair of directions        and       with maximum correlation.
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The CCA reduces to the generalized eigenvalue problem:

This problem has N1+N2 generalized eigenvalues ρ
“Kernelized” F-correlation is equivalent to canonical correlation 
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RKHSRKHS

RKHS – reproducing kernel Hilbert spaces
Let                be a Mercer kernel on                i.e. a function 
for which the Gram matrix 

is positive definite for any collection                    in   

Corresponding to any such kernel K there is a map 
from       to a feature space      such that

),( yxK pRX =

),( jiij xxKK =

Niix ,,1}{ K= X

Φ
X F

)(),(),( yxyxK ΦΦ=

If                             is a map from the input space into the RKHS then

RKHSRKHS

RKHS is the instantiation of        with the following property
called “reproducing property”
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KernelKernel

Isotropic Gaussian kernel – Mercer kernel with the feature space F 
the space of smooth functions  

)||||
2
1exp(),( 2
2 yxyxK −−=

σ

Theorem 1Theorem 1
Theorem 1
Let x1 and x2 be random variables in                Let K1 and K2 be Mercer 
kernels with feature maps        and        and feature spaces
Then the canonical correlation    between                and    
which is defined as

is equal   

pRX =
1Φ 2Φ XRFF ∈21,

)( 11 xΦ )( 22 xΦ
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Theorem 2Theorem 2
Theorem 2 
(Independence and F-correlation)
If F is the RKHS corresponding to Gaussian kernel 

iff x1 and x2 are independent 
0=Fρ

KernelizedKernelized CCACCA

Where K1 and K2 are Gram matrices of x1 and x2

This is equivalent to performing CCA on two vectors with 
covariance matrix 
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KernelizedKernelized CCACCA
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The kernelized CCA reduces to the generalized eigenvalue problem:

Input:
Data y1,y2,…yN

Kernel K(x,y)

1. Whiten the data
2. Compute Gram matrices K1,K2,…,Km of the estimated sources

{x1,x2,…,xN}, where xi=Wyi (Cholesky decomposition)
3. Define                         as the first eigenvalue of the generalized 

eigenvector equation

4. Minimize                                                        with respect to W    
(Stiefel manifold)

Output: W

Kernel ICA algorithmKernel ICA algorithm
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