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Pattern Classification and 
Kernels

let us have some training data of m elements

where X is a set of patterns and Y is a set of classifications
to classify an unseen pattern x, one takes into account  a 
notion of similarity between already classified xis and x
the similarity measure can be formalized as

and k is called a kernel
further derivations assume real-value symmetric kernels
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Dot Product as a Kernel
is a similarity measure of the form

geometrical representation

is one of the simplest kernels
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The Kernel Trick
before a learning algorithm is used, input space X is usually 
mapped into a feature space F by transformation ϕ: X → F
to avoid the computation in a potentially high dimensional 
space F, one picks features such that the dot product in the 
feature space can be evaluated by a non-linear function in the 
input space, known as the kernel trick

( ) ( ) ( )xφ,xφx,xk ′=′

Positive Definite 
(Reproducing) Kernels

gram matrix K with respect to x1, …, xm is defined as

gram matrix for the dot kernel with respect to x1 and x2 is

a real symmetric matrix K is positive definite if for every c

a kernel is positive definite (PD) if the corresponding gram 
matrix is positive definite. In such a case, there exists a 
procedure to construct the feature space associated with ϕ
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Feature Map for PD Kernels
define a feature map

form a linear combination of basis functions

define the following operator

and prove that
the operator is in fact dot product
the operation is a PD kernel
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What is Wrong with Dot 
Product?

if patterns x and x’ are translated by

the dot product between the pattern changes
this is not suitable for algorithms where the learning process 
should be translation invariant (PCA)
squared distance as a dissimilarity measure of the form

is translation invariant. Moreover, it can be expressed in the 
feature space by the kernel trick
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Dot Product and Squared 
Distance

dot product and squared distance measures can be related in 
the translated space by

the dot product is a PD kernel

( )
( ) ( )

( )x,xx,x2x,x

x,xx,x2x,xx,xx,x2x,x

x,x2x,x2

x,x2x,x2
xxxxxxxx,xx2

xxxxxxxx,xx

000

000

000

0

2
0

2
0

2
00

2
0

2
0

2
2
1

00

′′+′−

++−+′′+′−−
=

+′

−−′
′−+−+′−−=−′−

′−+−+′−−=−′−

( ) ( ) ( )

( ) ( ) ( ) 0xxcxxcxxc

xxcxxcxx,xxccx,xkcc

2m

1i
0ii

m

1i
0ii

m

1i

T
0ii

m

1i

m

1j
0jj

T
0ii

m

1i

m

1j
0j0iji

m

1i

m

1j
jiji

≥−=







−








−=

−−=−−=

∑∑∑

∑ ∑∑∑∑∑

===

= == == =

Conditionally Positive Definite  
Kernels

a kernel is conditionally positive definite (CPD) if for every c

k(x, x’) is a PD kernel if and only if q(x, x’) is a CPD kernel

negative squared distance is a CPD kernel
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Squared Distance and CPD  
Kernels

implies that q(x, x’) of the following form are CPD kernels

CDP kernels can be used to define the squared distance 
measure in some feature space

depending on the choice of β, the squared distance measure 
is used in an appropriate feature space
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Symmetric Kernels
construction similar to the feature maps of PD kernels can be 
done for symmetric kernels

as the assumption of q(x, x’) being PD kernel is dropped, Q
does not fulfill requirements for dot product

generalization of PD-CPD proposition for symmetric kernels
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Symmetric Kernels
a symmetric kernel q(x, x’) is a CPD kernel if and only if k(x, 
x’) is a PD kernel

this is a generalization of the previous results with respect to
an arbitrary center in the space, which is weighted by ci
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Thank You for Listening


