The Kernel Trick for Distances

Leading discussion

Branislav Kveton Intelligent Systems Program

Content

- Pattern classification and kernels
- Dot product as a kernel
- The kernel trick
- Positive definite (reproducing) kernels
- Feature map for PD kernels
- What is wrong with dot product?
- Dot product and squared distance
- Conditionally positive definite kernels
- Squared distance and CPD kernels
- Symmetric kernels

Pattern Classification and Kernels

• let us have some training data of m elements

$$(x_1, y_1), ..., (x_m, y_m) \in X \times Y$$

- where X is a set of patterns and Y is a set of classifications
- to classify an unseen pattern x, one takes into account a notion of similarity between already classified x_is and x
- · the similarity measure can be formalized as

$$k: X \times X \to R, (x, x') \mapsto k(x, x')$$

- and k is called a kernel
- · further derivations assume real-value symmetric kernels

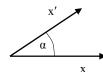
$$k(x, x') = k(x', x)$$

Dot Product as a Kernel

· is a similarity measure of the form

$$\left\langle \mathbf{x},\mathbf{x'}\right\rangle = \sum_{i=1}^{n} \mathbf{x}_{i}\mathbf{x}_{i}'$$

geometrical representation



 $\langle \mathbf{x}, \mathbf{x}' \rangle = \|\mathbf{x}\| \|\mathbf{x}'\| \cos \alpha \qquad \langle \mathbf{x}, \mathbf{x}' \rangle = \|\mathbf{x}\| \|\mathbf{x}'\|$

$$\langle \mathbf{x}, \mathbf{x}' \rangle = \begin{cases} 0 & \mathbf{x} \perp \mathbf{x}' \\ \|\mathbf{x}\| \|\mathbf{x}'\| & \mathbf{x} \mid |\mathbf{x}'| \\ (0, \|\mathbf{x}\| \|\mathbf{x}'\|) & \text{else} \end{cases}$$

is one of the simplest kernels

The Kernel Trick

- before a learning algorithm is used, input space X is usually mapped into a feature space F by transformation $\phi \colon X \to F$
- to avoid the computation in a potentially high dimensional space F, one picks features such that the dot product in the feature space can be evaluated by a non-linear function in the input space, known as the kernel trick

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle$$

Positive Definite (Reproducing) Kernels

- gram matrix K with respect to $x_1, \, ..., \, x_m$ is defined as $K_{i,i} = k \big(x_i, x_i \big)$
- gram matrix for the dot kernel with respect to x₁ and x₂ is

$$\begin{pmatrix} \left\langle \mathbf{x}_{1},\mathbf{x}_{1}\right\rangle & \left\langle \mathbf{x}_{2},\mathbf{x}_{1}\right\rangle \\ \left\langle \mathbf{x}_{1},\mathbf{x}_{2}\right\rangle & \left\langle \mathbf{x}_{2},\mathbf{x}_{2}\right\rangle \end{pmatrix}$$

a real symmetric matrix K is positive definite if for every c

$$cKc^{T} = \sum_{i=1}^{m} \sum_{i=1}^{m} c_{i}c_{j}K_{i,j} \geq 0$$

 a kernel is positive definite (PD) if the corresponding gram matrix is positive definite. In such a case, there exists a procedure to construct the feature space associated with φ

Feature Map for PD Kernels

define a feature map

$$\varphi: X \mapsto R^X, x \mapsto k(.,x)$$

· form a linear combination of basis functions

$$f(.) = \sum_{i=1}^{m} \alpha_i k(., x_i), \quad g(.) = \sum_{i=1}^{m'} \beta_j k(., x'_j)$$

· define the following operator

$$\left\langle f,g\right\rangle =\sum_{i=1}^{m}\sum_{j=1}^{m'}\alpha_{i}\beta_{j}k\left(x_{i},x_{j}'\right)\!\!,\quad k\!\left(x,x'\right)\!=\left\langle k\!\left(.,x\right)\!\!,k\!\left(.,x'\right)\!\right\rangle =\left\langle \phi\!\left(x\right)\!\!,\phi\!\left(x'\right)\!\right\rangle$$

- · and prove that
 - the operator is in fact dot product
 - the operation is a PD kernel

What is Wrong with Dot Product?

if patterns x and x' are translated by

$$x \mapsto x - x_0, \quad x' \mapsto x' - x_0$$

- the dot product between the pattern changes
- this is not suitable for algorithms where the learning process should be translation invariant (PCA)
- squared distance as a dissimilarity measure of the form

$$\|\mathbf{x} - \mathbf{x}'\|^2$$

 is translation invariant. Moreover, it can be expressed in the feature space by the kernel trick

$$\begin{split} \left\|\phi(x) - \phi(x')\right\|^2 &= \left\langle\phi(x), \phi(x)\right\rangle - 2\left\langle\phi(x), \phi(x')\right\rangle + \left\langle\phi(x'), \phi(x')\right\rangle \\ &= k(x,x) + k(x',x') - 2k(x,x') \end{split}$$

Dot Product and Squared Distance

 dot product and squared distance measures can be related in the translated space by

$$\begin{array}{lll} \left\langle x-x_{0},x'-x_{0}\right\rangle & = & \frac{1}{2}\Big(-\left\|x-x'\right\|^{2}+\left\|x-x_{0}\right\|^{2}+\left\|x_{0}-x'\right\|^{2}\Big)\\ 2\left\langle x-x_{0},x'-x_{0}\right\rangle & = & -\left\|x-x'\right\|^{2}+\left\|x-x_{0}\right\|^{2}+\left\|x_{0}-x'\right\|^{2}\\ 2\left\langle x,x'\right\rangle-2\left\langle x,x_{0}\right\rangle-\\ 2\left\langle x',x_{0}\right\rangle+2\left\langle x_{0},x_{0}\right\rangle & = & -\left(\left\langle x,x\right\rangle-2\left\langle x,x'\right\rangle+\left\langle x',x'\right\rangle\right)+\left(\left\langle x,x\right\rangle-2\left\langle x,x_{0}\right\rangle+\left\langle x_{0},x_{0}\right\rangle\right)+\\ \left(\left\langle x,x\right\rangle-2\left\langle x,x_{0}\right\rangle+2\left\langle x,x_{0}\right\rangle+\left\langle x,x_{0}\right\rangle+2\left\langle x,x$$

the dot product is a PD kernel

$$\begin{split} \sum_{i=1}^{m} \sum_{j=1}^{m} c_{i} c_{j} k \Big(x_{i}, x_{j} \Big) &= \sum_{i=1}^{m} \sum_{j=1}^{m} c_{i} c_{j} \Big\langle x_{i} - x_{0}, x_{j} - x_{0} \Big\rangle = \sum_{i=1}^{m} c_{i} \Big(x_{i} - x_{0} \Big)^{T} \sum_{j=1}^{m} c_{j} \Big(x_{j} - x_{0} \Big) \\ &= \left(\sum_{i=1}^{m} c_{i} \Big(x_{i} - x_{0} \Big)^{T} \right) \! \left(\sum_{i=1}^{m} c_{i} \Big(x_{i} - x_{0} \Big) \right) \! = \left\| \sum_{i=1}^{m} c_{i} \Big(x_{i} - x_{0} \Big) \right\|^{2} \geq 0 \end{split}$$

Conditionally Positive Definite Kernels

a kernel is conditionally positive definite (CPD) if for every c

$$cKc^{T} = \sum_{i=1}^{m} \sum_{j=1}^{m} c_{i}c_{j}K_{i,j} \geq 0, \quad \sum_{i=1}^{m} c_{i} = 0$$

- k(x, x') is a PD kernel if and only if q(x, x') is a CPD kernel

$$k(x, x') = q(x, x') - q(x, x_0) - q(x_0, x') + q(x_0, x_0)$$

negative squared distance is a CPD kernel

$$\begin{split} -\sum_{i=1}^{m}\sum_{j=1}^{m}c_{i}c_{j}q\left(x_{i},x_{j}\right) &=& -\sum_{i=1}^{m}\sum_{j=1}^{m}c_{i}c_{j}\left\|x_{i}-x_{j}\right\|^{2} \\ &=& -\sum_{i=1}^{m}c_{i}\sum_{j=1}^{m}c_{j}\left\|x_{j}\right\|^{2} - \sum_{j=1}^{m}c_{j}\sum_{i=1}^{m}c_{i}\left\|x_{i}\right\|^{2} + 2\sum_{i=1}^{m}\sum_{j=1}^{m}c_{i}c_{j}\left\langle x_{i},x_{j}\right\rangle \\ &=& 2\left(\sum_{i=1}^{m}c_{i}x_{i}\right)^{T}\left(\sum_{i=1}^{m}c_{i}x_{i}\right) = 2\left\|\sum_{i=1}^{m}c_{i}x_{i}\right\|^{2} \geq 0 \end{split}$$

Squared Distance and CPD Kernels

implies that q(x, x') of the following form are CPD kernels

$$q(x, x') = -||x - x'||^{\beta}, \quad 0 < \beta \le 2$$

 CDP kernels can be used to define the squared distance measure in some feature space

$$\begin{split} \left\| \phi(x) - \phi(x') \right\|^2 &= \left\langle \phi(x), \phi(x) \right\rangle - 2 \left\langle \phi(x), \phi(x') \right\rangle + \left\langle \phi(x'), \phi(x') \right\rangle \\ &= k(x, x) + k(x', x') - 2k(x, x') \\ q(x, x) - q(x, x_0) - q(x_0, x) + q(x_0, x_0) + \\ &= q(x', x') - q(x', x_0) - q(x_0, x') + q(x_0, x_0) - \\ \left(2q(x, x') - 2q(x, x_0) - 2q(x_0, x') + 2q(x_0, x_0) \right) \\ &= -q(x, x') + \frac{1}{2} \left(q(x, x) + q(x', x') \right) \end{split}$$

• depending on the choice of β , the squared distance measure is used in an appropriate feature space

Symmetric Kernels

 construction similar to the feature maps of PD kernels can be done for symmetric kernels

$$q(x, x') = Q(\varphi(x), \varphi(x'))$$

 as the assumption of q(x, x') being PD kernel is dropped, Q does not fulfill requirements for dot product

$$Q(f,f) = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j q(x_i, x_j) \ge 0$$

• generalization of PD-CPD proposition for symmetric kernels

$$\begin{array}{lll} k(x,x') & = & Q(\phi(x) - \phi(x_{_0}), \phi(x') - \phi(x_{_0})) \\ & = & Q(\phi(x), \phi(x')) - Q(\phi(x), \phi(x_{_0})) - Q(\phi(x'), \phi(x_{_0})) + Q(\phi(x_{_0}), \phi(x_{_0})) \\ & = & q(x,x') - q(x,x_{_0}) - q(x',x_{_0}) + q(x_{_0},x_{_0}) \end{array}$$

Symmetric Kernels

a symmetric kernel q(x, x') is a CPD kernel if and only if k(x, x') is a PD kernel

$$k\big(x,x'\big) = \tfrac{1}{2} \Bigg(q\big(x,x'\big) - \sum_{i=1}^m c_i q\big(x,x_i\big) - \sum_{i=1}^m c_i q\big(x_i,x'\big) + \sum_{i=1}^m \sum_{j=1}^m c_i c_j q\big(x_i,x_j\big) \Bigg), \quad \sum_{i=1}^m c_i = 1$$

• this is a generalization of the previous results with respect to an arbitrary center in the space, which is weighted by $c_{\rm i}$

Thank You for Listening

