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Pattern Classification and
Kernels

e let us have some training data of m elements
(K s (X ¥ ) € XX Y
e where X is a set of patterns and Y is a set of classifications

e to classify an unseen pattern x, one takes into account a
notion of similarity between already classified x;s and x

e the similarity measure can be formalized as
k: XxX->R, (x,x")-k(x,x')
e and k is called a kernel
e further derivations assume real-value symmetric kernels
k(x,x")=k(x',x)

Dot Product as a Kernel

e is a similarity measure of the form
(x,x)= inx{
i=1
e geometrical representation

X' 0 x1x
(xx)=[xllxfeosa (xx)=xlx]  xlI¥

a 1|
5 (O,HX‘ X ) else

»

X

e is one of the simplest kernels




The Kernel Trick

e before a learning algorithm is used, input space X is usually
mapped into a feature space F by transformation ¢: X - F

e to avoid the computation in a potentially high dimensional
space F, one picks features such that the dot product in the
feature space can be evaluated by a non-linear function in the
input space, known as the kernel trick

k(x,x) = (p(x). o(x"))

Positive Definite
(Reproducing) Kernels

e gram matrix K with respect to x, ..., x, is defined as
K —k(xi,xj)

e gram matrix for the dot kernel with respect to x, and x, is
<X15X1> <X25X1>
<X15X2> <X25X2>

e areal symmetric matrix K is positive definite if for every ¢

m m

cKe' =) ek, ;20

i=1 j=1

e a kernel is positive definite (PD) if the corresponding gram
matrix is positive definite. In such a case, there exists a
procedure to construct the feature space associated with ¢




Feature Map for PD Kernels 2
e define a feature map
p:X—R*, xk(,x)
e form a linear combination of basis functions
f0=3ukln). el)=3pklx)
e define the following operator
<f, g> = giaiﬁjk(xi,xgl k(x,x’)z <k(.,x),k(.,x')> = <(p(x),(p(x')>

e and prove that

o the operator is in fact dot product

o the operation is a PD kernel
What is Wrong with Dot seis
Product? :

e if patterns x and x’ are translated by
X X—X,, X Px'—X,

e the dot product between the pattern changes

¢ this is not suitable for algorithms where the learning process
should be translation invariant (PCA)

e squared distance as a dissimilarity measure of the form

[x~x"

e is translation invariant. Moreover, it can be expressed in the

feature space by the kernel trick

lo()-o& ) = (p(x)o(x))—2(p() o)+ (o) o(x)

= k(x,x)+k(x,x")-2k(x,x')




Dot Product and Squared
Distance

e dot product and squared distance measures can be related in
the translated space by
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2x=xp,x' =X, x| o —x
2<x,x’> —2<x,x0> - —(<X,X>—2<X, x’>+<x’,x’> +(<x,x> —2<x,x0> +<x0,x0>)+

2(x', %) +2(X0,X,) (<x0, Xo)—2(x', %)+ <x’,x'>)

e the dot product is a PD kernel

iZZ:jZ::cicjk(xpxj) = iZ::jZ::cicj<xi—xo,x‘i—x0>:iZ::ci(xi—xO)TjZ::cJ(xJ—xo)
_ (zc (x _XO)TJ@C(X _Xo)j_ ici(xi_%# >0
Conditionally Positive Definite | $:::

Kernels

e a kernel is conditionally positive definite (CPD) if for every ¢

m m m
cKe'=>>ceK 20, Y =0
i=l1

e k(x,x’)is a PD kernel if and only if q(x, x”) is a CPD kernel

k(x,x')=q(x,x")=q(x, x, )= q(x,, x)+q(x,, %)
e negative squared distance is a CPD kernel
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Squared Distance and CPD
Kernels

e implies that q(x, x’) of the following form are CPD kernels
q(x,x')z —Hx —XIHB, 0<B<2
e CDP kernels can be used to define the squared distance
measure in some feature space
lo(x)-o& ) = (p(x)ox))—2(p() o)+ (o)L o(x)
= k(x,x)+k(x,x")-2k(x,x')
qix,x _q(XaXO)_q(XoaX)+q(X07X0)+
= q(X',X')—q(X',XO)—q(XO,X')+q(XO,XO)—
(Zq(x,X')—2q(X,XO)—Zq(XO,X')+2q(XO,XO))
= —q(x,x’)+'5(q(x,x)+q(x’,x’
e depending on the choice of B, the squared distance measure
is used in an appropriate feature space

Symmetric Kernels

e construction similar to the feature maps of PD kernels can be
done for symmetric kernels
q(x,x)=Qlo(x).o(x"))
e as the assumption of q(x, x’) being PD kernel is dropped, Q
does not fulfill requirements for dot product

Q(ff ZZaaq(x X)>0

e generalization of PD-CPD proposition for symmetric kernels

k(x,x) = Qlo(x)-o(x, ) o(x)-o(x,))
Qo(x). o(x")- ?(‘P(X) o(x,))- Qlo(x') 9(x, )+ Qlo(x, ) o(x,))

= q(x.x)-q(x.x,)-q(x’,x,)+q(x,.%,)




Symmetric Kernels

e a symmetric kernel q(x, x”) is a CPD kernel if and only if k(x,
x’) is a PD kernel
)4 ) St ) Seats. )+ S S cenleon)| S

e this is a generalization of the previous results with respect to
an arbitrary center in the space, which is weighted by c,
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