CS 3750 Advanced Machine Learning Support Vector Machines for Regression Min Chi mic31@pitt.edu Intelligent system program November 10, 2003

•Introduction •Basic techniques in SVR •Basic linear regression(separable case) • Linear ε- Intensive Loss Algorithm(non-separable case) • Primal Formulation • Dual Formulation • Nonlinear regression • Kernel Formulation • Some SVM algorithms • Conclusion

Support vector machine SVM

- •SVM maximize the margin around the separating hyperplane.
- •The decision function is fully specified by a subset of the training data, the support vectors.

Introduction

- Transformation with
 - -linear function
 - -nonlinear function-Kernel.
- Nonlinear become linear boundary in the transformed space.
- Aim: To find the optimal Kernel or linear function and corresponding support vectors.

The regression Problem

- •Regression=find a function that fits the observations.
- "Close point" may be wrong due to the noise only.
- Line should be influenced by the real data not the noise.
- -Ignore the errors from those point which are close.

Duality theory in the convex optimization.

•Uniqueness: Every strictly convex constrained optimization problem has a unique solution.

$$f(x_{\lambda}) < \lambda f(x_1) + (1-\lambda)f(x_2)$$
 for $x_{\lambda} = \lambda x_1 + (1-\lambda)x_2$

- •Lagrange Function.
- •Dual Objective Function
- •Duality Gap
- •Karush-Kuhn-Tucker (KKT) conditions. A set of primal and dual variables that is both feasible and satisfies the KKT conditions is the optimal solution.

(i.e. constraint.dual variables=0)

Basic Linear regression (separable case)

Training data:

$$\{(x_1, y_1), ..., (x_l, y_l)\}, x \in R^n, y \in R$$

- Our goal is to find a function f(x) that as at most Edeviation from the actually obtained target \mathcal{Y} for all the training data. At the same time as flat as possible.
- With a hyperplane(assuming linear model and the data can be separated!)

$$f(x,a) = \langle w, x \rangle + b$$

Primal regression problem

Linear function f taking the form:

$$f(x) = \langle \omega, x \rangle + b$$
 with $\omega \in \mathbb{R}^n, b \in \mathbb{R}$ (1)

Flatness in the equation (1) means that one seeks small ω . Formally, we can write this problem as a convex optimization problem by:

minimize
$$\frac{1}{2} \|w\|^2$$
All pair (x_i, y_i) with ε precision

subject to
$$\begin{cases} y_i - \langle w_i, x_i \rangle - b \le \varepsilon \\ \langle w_i, x_i \rangle + b - y_i \le \varepsilon \end{cases}$$
(2)

Support Vector regression (Vapnik 1995) (non-separable case)

• Before, we introduce the case that function f actually exists that approximates all data pairs with ε precision. Sometimes, we may want to allow some errors.

Linear & -support vector regression

minimize
$$\frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{l} (\xi_{i} + \xi_{i}^{*})$$
subject to
$$\begin{cases} y_{i} - \langle w_{i}, x_{i} \rangle - b \leq \varepsilon + \xi_{i} \\ \langle w_{i}, x_{i} \rangle + b - y_{i} \leq \varepsilon + \xi_{i}^{*} \\ \xi_{i}, \xi_{i}^{*} \geq 0 \end{cases}$$
(3)

Define $\xi_i = 0$ if there is no error for x_i .

- -minimize the error made outside of the tube.
- -The parameter C to control the amount of influence of error. C balance the two competing goals.(error and

||w||)

$$\left|\xi\right|_{\varepsilon} = \begin{cases} 0 & \text{for } \left|\xi\right| \leq \varepsilon \\ \left|\xi\right| - \varepsilon & \text{otherwise} \end{cases}$$

The Optimization problem

Lagrangian function will help us to formulate the dual problem

The dual of the problem is:

$$\max L := \frac{1}{2} \|\omega\|^2 + C \sum_{i=1}^{l} (\xi_i + \xi_i^*) -$$

$$\sum_{i=1}^{l} a_i (\varepsilon - \xi_i - y_i + \langle \omega, x_i \rangle + b)$$

$$-\sum_{i=1}^{l}a_{i}^{*}(\varepsilon+\xi_{i}^{*}+y_{i}-\langle\omega,x_{i}\rangle-b)-\sum_{i=1}^{l}(\eta_{i}\xi_{i}+\eta_{i}^{*}\xi_{i}^{*})$$

subject to Lagrange Multiplier: $a_i, a_i^*, \eta_i, \eta_i^* \ge 0$ (5)

primal variable : $\omega, b, \xi_i, \xi_i^*$

partial denter variables has to value $\frac{\partial L}{\partial b} = \sum_{i=1}^{l} (a_i^* - a_i) = 0$ $\frac{\partial L}{\partial \omega} = \omega - \sum_{i=1}^{l} (a_i^* - a_i) x_i = 0$ $\frac{\partial L}{\partial \xi_i^{(*)}} = C - a_i^{(*)} - \eta_i^{(*)} = 0$ It follows from the saddle point condition that the partial derivations of L with respect to the primal

$$\frac{\partial L}{\partial b} = \sum_{i=1}^{l} \left(a_i^* - a_i \right) = 0 \tag{6}$$

$$\frac{\partial L}{\partial \omega} = \omega - \sum_{i=1}^{l} (a_i^* - a_i) x_i = 0 \qquad (7)$$

$$\frac{\partial L}{\partial \xi_{i}^{(*)}} = C - a_{i}^{(*)} - \eta_{i}^{(*)} = 0$$
 (8)

calculation

$$L = \frac{1}{2} \langle w, w \rangle + \sum_{i=1}^{l} C \xi_{i}^{*} + \sum_{i=1}^{l} C \xi_{i}^{*}$$

$$- \sum_{i=1}^{l} a_{i} \varepsilon - \sum_{i=1}^{l} a_{i} \xi_{i}^{*} - \sum_{i=1}^{l} a_{i} y_{i}^{*} - \sum_{i=1}^{l} a_{i} \langle \omega, x_{i} \rangle + \sum_{i=1}^{l} a_{i} b$$

$$- \sum_{i=1}^{l} a_{i}^{*} \varepsilon - \sum_{i=1}^{l} a_{i}^{*} \xi_{i}^{*} - \sum_{i=1}^{l} a_{i}^{*} y_{i}^{*} + \sum_{i=1}^{l} a_{i}^{*} \langle \omega, x_{i} \rangle + \sum_{i=1}^{l} a_{i}^{*} b$$

$$- \sum_{i=1}^{l} \eta_{i} \xi_{i}^{*} - \sum_{i=1}^{l} \eta_{i}^{*} \xi_{i}^{*}$$

$$L = \frac{1}{2} \langle w, w \rangle + \sum_{i=1}^{l} \xi_{i} \underbrace{(C - \eta_{i} - a_{i})}_{=0 \text{ (from (8), } C - \eta_{i}^{(*)} - a_{i}^{(*)} = 0)} + \underbrace{\sum_{i=1}^{l} \xi_{i}^{*} \underbrace{(C - \eta_{i}^{*} - a_{i}^{*})}_{=0 \text{ (from (8), } C - \eta_{i}^{(*)} - a_{i}^{(*)} = 0)} - \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) \varepsilon - \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) y_{i}} - \underbrace{\sum_{i=1}^{l} \underbrace{(a_{i}^{*} - a_{i}^{*}) \langle \omega, x_{i} \rangle}_{=\langle w, w \rangle \text{ (From (7), } \omega = \sum_{i=1}^{l} (a_{i} + a_{i}^{*}) x_{i})} + \underbrace{\sum_{i=1}^{l} \underbrace{(a_{i}^{*} - a_{i}) b}_{=0 \text{ (From (6), } \sum_{i=1}^{l} (a_{i}^{*} - a_{i}) = 0)}_{=0 \text{ (From (6), } \sum_{i=1}^{l} (a_{i}^{*} - a_{i}) = 0)}$$

$$L = -\frac{1}{2} \langle w, w \rangle - \sum_{i=1}^{l} (a_i + a_i^*) \varepsilon - \sum_{i=1}^{l} (a_i + a_i^*) y_i$$

$$= -\frac{1}{2} \sum_{i=1}^{l} (a_i - a_i^*) (a_j - a_j^*) \langle x_i, x_j \rangle -$$

$$\sum_{i=1}^{l} (a_i + a_i^*) \varepsilon - \sum_{i=1}^{l} (a_i + a_i^*) y_i$$
subject to :\[\begin{cases} \sum_{i=1}^{l} (a_i - a_i^*) = 0 \\ a_i, a_i^* \in [0, C] \end{cases} \]

Results.

From the equation (7)

$$\omega = \sum_{i=1}^{l} (a_i - a_i^*) x_i$$

We can get:

$$f(x) = \sum_{i=1}^{l} (a_i - a_i^*) \langle x_i, x \rangle + b \qquad (10)$$

How to computing b?

• At the KKT(Karush-Kuhn-Tucker) conditions: at the optimal solution the product between dual variables and constraints has to vanish. This means that the Lagrange multipliers will only be non-zero for points outside the ε band. Thus these points are the support vectors. In the SV case:

$$a_{i}(\varepsilon - \xi_{i} - y_{i} + \langle \omega, x_{i} \rangle + b) = 0$$

$$a_{i}^{*}(\varepsilon + \xi_{i}^{*} + y_{i} - \langle \omega, x_{i} \rangle - b) = 0$$

$$(C - a_{i})\xi_{i} = 0$$

$$(C - a_{i}^{*})\xi_{i}^{*} = 0$$
(12)

How to computing b?

Firstly, only samples $(\mathcal{X}_i, \mathcal{Y}_i)$ with corresponding $a_i^{(*)} = C$ lie outside the the $\boldsymbol{\epsilon}$ -insensitive tube around f.

Secondly, $a_i a_i^* = 0$ there can never be a set of dual variables a_i , a_i^* which are both simultaneously nonzero.

Finally, for $a_i^{(*)} \in (0, C)$ we have $\xi_i^{(*)} = 0$.

Hence b can be computed as follows:

$$b = y_i - \langle \omega, x_i \rangle - \varepsilon$$
 for $a_i \in (0, C)$

$$b = y_i - \langle \omega, x_i \rangle + \varepsilon \quad \text{for } a_i^* \in (0, C)$$
 (13)

Nonlinear SVR

- •Key idea:transform xi to a higher dimension to make life easier.
 - -input space: the space xi are in.
 - -feature space: the space of $\Phi(xi)$ after transformation.
- •Why transform?
- Linear operation in the feature space is equivalent to the nonlinear operation in the input space.
 - -make the non-separable problem separable.

Example Transformation

•Define the Kernel Function:

$$k(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) = (1 + x_1 y_1 + x_2 y_2)^2$$

•Consider the following transformation:

$$\Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$\Phi\left(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2)$$

$$\langle \Phi \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right), \Phi \left(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \right) \rangle = (1 + x_1 y_1 + x_2 y_2)^2$$

$$= k(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix})$$

 $= k(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \end{bmatrix})$ So the inner product can be computed by k without going through the mapping $\Phi(.)$.

Kernel Trick

The relationship between the Kernel funtion k and the mapping $\Phi(.)$ is:

$$k(x,y) = \langle \Phi(x), \Phi(y) \rangle$$
.

- This is known as the Kernel trick.
- •We choose k instead of choosing $\Phi(.)$
- •K(x,y) need to satisfy a technical condition (Mercer Conditions) in order for $\Phi(.)$ to exist.

Kernel

Which functions k(x, x') correspond to a dot product in the feature space?

$$K(x_i, x_j) = \Phi(x_i).\Phi(x_j)$$

Hilbert Schmidt Theory:

 $K(x_i, x_j)$ is a symmetric function.

Mercer's conditions:

$$K (x_{i}, x_{j}) = \sum_{m=1}^{\infty} a_{m} \Phi (x_{i}). \Phi (x_{j}) \text{ if}$$

$$\iint K (x, x') f (x) f (x') dxdx \geq 0,$$

$$\int f^{2}(x) dx < \infty$$

Linear combination of Kernels:

$$k(x, x') := c_1 k_1(x, x') + c_2 k_2(x, x')$$

Integral of Kernels:

$$k(x,x') := \int s(x,z)s(x',z)dz$$

$$k(x, x') := k(x - x')$$
 if

Integral of Kernels:

$$k(x,x') := \int s(x,z)s(x',z)dz$$
Smola, Scholkopf and Muller(1998):

$$k(x,x') := k(x-x') \text{ if}$$

$$F[k](\omega) = (2\pi)^{-\frac{d}{2}} \int e^{-i(\omega,x)}k(x)dx \ge 0$$
Burges(1999):
$$k(x,x') := k(\langle x,x'\rangle)$$

$$k(\xi) \ge 0,$$

$$\partial_{\xi} k(\xi) \ge 0,$$

$$\partial_{\xi} k(\xi) + \xi \partial_{\xi}^{2} k(\xi) \ge 0$$

Burges(1999):
$$k(x,x') := k(\langle x,x'\rangle)$$

$$k(\xi) \geq 0$$

$$\partial_{\xi} k(\xi) \geq 0$$

$$\partial_{\xi} k(\xi) + \xi \partial_{\xi}^{2} k(\xi) \geq 0$$

Non-linear SVR algorithm

Primal problem:

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} (\xi_i + \xi_i^*)$$

subject to
$$\begin{cases} y_{i} - \langle w_{i}, \Phi(x_{i}) \rangle - b \leq \varepsilon + \xi_{i} \\ \langle w_{i}, \Phi(x_{i}) \rangle + b - y_{i} \leq \varepsilon + \xi_{i}^{*} \end{cases}$$

$$\begin{cases} w_i, \Psi(x_i) / + b - y_i \le b + \zeta_i \\ \xi_i, \xi_i^* \ge 0 \end{cases}$$

(3)

$$\omega = \sum_{i=1}^{l} (a_i - a_i^*) \Phi(x_i)$$

Non-linear SVR algorithm similar with (9) $L = -\frac{1}{2} \sum_{i=1}^{l} (a_i - a_i^*)(a_j - a_j^*) k(x_i, x) - (14)$ $\sum_{i=1}^{l} (a_i + a_i^*) \varepsilon - \sum_{i=1}^{l} (a_i + a_i^*) y_i$ subject to: $\begin{cases} \sum_{i=1}^{l} (a_i - a_i^*) = 0 \\ a_i, a_i^* \in [0, C] \end{cases}$ If $k(x, x^*) := \langle \Phi(x), \Phi(x^*) \rangle$. Similar with (10): $\omega = \sum_{i=1}^{l} (a_i - a_i^*) \Phi(x_i) \text{ and } f(x) = \sum_{i=1}^{l} (a_i - a_i^*) k(x_i, x) + b$ (15)

Cost Function

Training data:

$$\{(x_1, y_1), ..., (x_i, y_i)\}, x \in \mathbb{R}^n, y \in \mathbb{R}$$

We assume that the training data has been drawn iid from some probability distribution p(x,y). Our goal is to find a function f(x) that minimizes a risk functional.

$$R[f] = \int c(x, y, f(x)) dp(x, y)$$

A possible approximation:
$$R_{emp}[f] := \frac{1}{l} \sum_{i=1}^{l} c(x_i, y_i, f(x_i))$$

Add a capacity control term:
$$R_{reg} [f] := R_{emp} [f] + \frac{\lambda}{2} \|\omega\|^2$$

 $\lambda > 0$ called regulation constant.

One hand, we want to avoid using a very complicated function c as this may lead to difficult optimization; on the other hand, we should use the cost function that suits data best. Under the assumption that the data were idd and generated by function plus addictive noise.

$$c(x, y, f(x)) = -\log p(y - f(x))$$

	loss function	density model
ε -insensitive	$c(\xi) = \xi _c$	$p(\xi) = \frac{1}{2(1+\epsilon)} \exp(- \xi _{\epsilon})$
Laplacian	$c(\xi) = \xi $	$p(\xi) = \frac{1}{2} \exp(- \xi)$
Gaussian	$c(\xi) = \frac{1}{2}\xi^2$	$p(\xi) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{\xi^2}{2})$
Huber's robust loss	$c(\xi) = \begin{cases} \frac{1}{2\sigma}(\xi)^2 & \text{if } \xi \le \sigma \\ \xi - \frac{\sigma}{2} & \text{otherwise} \end{cases}$	$p(\xi) \propto \begin{cases} \exp(-\frac{\xi^2}{2\sigma}) & \text{if } \xi \leq \sigma \\ \exp(\frac{\sigma}{2} - \xi) & \text{otherwise} \end{cases}$
Polynomial	$c(\xi) = \frac{1}{p} \xi ^p$	$p(\xi) = \frac{p}{2\Gamma(1/p)} \exp(- \xi ^p)$
Piecewise polynomial	$c(\xi) = \begin{cases} \frac{1}{p\sigma^{p-1}}(\xi)^p & \text{if } \xi \le \sigma \\ \xi - \sigma^{\frac{p-1}{p}} & \text{otherwise} \end{cases}$	$p(\xi) \propto \begin{cases} \exp(-\frac{\xi P}{p\sigma P^{-1}}) & \text{if } \xi \leq \sigma \\ \exp(\sigma \frac{P^{-1}}{p} - \xi) & \text{otherwise} \end{cases}$

Table 1 Common loss functions and corresponding density models

For the loss function:

$$c(x, y, f(x)) = \begin{cases} 0 & \text{for } |y - f(x)| \le \varepsilon \\ \widetilde{c}(|y - f(x)| - \varepsilon) & \text{otherwise} \end{cases}$$
 (15)

Compare with ε – intensive loss function

$$\left|\xi\right|_{\varepsilon} = \begin{cases} 0 & \text{for } \left|\xi\right| \le \varepsilon \\ \left|\xi\right| - \varepsilon & \text{otherwise} \end{cases}$$

- •Extend the special choice to more general convex cost functions.
- Moreover, we might choose different cost functions \widetilde{c}_i , \widetilde{c}_i^* and different values of $\mathcal{E}, \mathcal{E}^*$ for each sample. Similar with (3), we can get:

By standard Lagrange multiplier technique, exactly the same manner as in the ε-intensive loss function.

minimize
$$\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} (\widetilde{c}(\xi_i) + \widetilde{c}(\xi_i^*))$$
subject to
$$\begin{cases} y_i - \langle w_i, x_i \rangle - b \le \varepsilon + \xi_i \\ \langle w_i, x_i \rangle + b - y_i \le \varepsilon + \xi_i^* \\ \xi_i, \xi_i^* \ge 0 \end{cases}$$
 (16)

$$L = -\frac{1}{2} \sum_{i=1}^{l} (a_{i} - a_{i}^{*})(a_{j} - a_{j}^{*})\langle x_{i}, x_{j} \rangle +$$

$$\sum_{i=1}^{l} (y_{i}(a_{i} - a_{i}^{*}) - \varepsilon(a_{i} + a_{i}^{*}) + C(T(\xi_{i}) + T(\xi_{i}^{*})))$$
where
$$\begin{cases} \omega = \sum_{i=1}^{l} (a_{i} - a_{i}^{*})x_{i} \\ T(\xi) := \widetilde{c}(\xi) - \xi \partial_{\xi} \widetilde{c}(\xi) \end{cases}$$

$$\sum_{i=1}^{l} (a_{i} - a_{i}^{*}) = 0$$
subject to
$$:\begin{cases} \sum_{i=1}^{l} (a_{i} - a_{i}^{*}) = 0 \\ a \in [0, C \partial_{\xi} \widetilde{c}(\xi)] \\ \xi = \inf\{ \xi \mid C \partial_{\xi} \widetilde{c}(\xi) \ge a \} \\ \xi \ge 0 \end{cases}$$
(18)

Algorithms- Interior Point Algorithms.

variable a denote vector and α_i denotes the i – th component.

minimize
$$\frac{1}{2}q(\alpha) + c.a$$

subject to $A\alpha = b$ $l \le \alpha \le \mu$ $c, a, l, \mu \in \mathbb{R}^n$, $A \in \mathbb{R}, b \in \mathbb{R}^m$

•Add slack variables;

minimize
$$\frac{1}{2}q(\alpha) + c.a$$

subject to $A\alpha = b$ a-g = l, $a+t = \mu$ $g,t \ge 0$

- •Write the Wolfe dual.
- •Get the KKT conditions
- •Solve the Equations

SMO(Sequential minimal optimization)

-each iteration, SMO chooses only two α_i , and find optimal value, updates

the SVM to reflect new optimal value

- 3 components to SMO
 - Analytic method to solve for two lagrange multiplier
 - 2. Heuristic for choosing
 - 3. A method for computing bias b

Other Algorithms

- · Subset selection algorithms
- Inverse problems.(suitable for specific settings)
- Convex combination and l_1 -norms.(different ways of measuring capacity and reduction to the linear programming)
- Semiparametric modeling.(different ways of controlling capacity and different classes).

conclusion

- Linear operation in the feature space is equivalent to the nonlinear operation in the input space.
- key concepts of SVM
 - optimization
 - kernel trick
- There are still a lot of open issues in SVR.

Both time complexity & storage capacity problem are

- · increasing as train data increase
- The choice of kernel function: there are no guidelines

