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Support Vector Machines for
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*Introduction
*Basic techniques in SVR

*Basic linear regression(separable case)

* Linear &- Intensive Loss Algorithm(non-
separable case)

* Primal Formulation
* Dual Formulation
* Nonlinear regression

*Kernel Formulation
*Some SVM algorithms

*Conclusion




Support vector machine SVM

Support vedors

*SVM maximize the margin
around the separating
hyperplane.

I Y

*The decision function is fully
specified by a subset of the
training data, the support

n
vectors. Maximize

margn

Introduction

e Transformation with
-linear function
-nonlinear function-Kernel.

» Nonlinear become linear boundary in the
transformed space.

» Aim: To find the optimal Kernel or linear
function and corresponding support vectors.
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The regression Problem

" = °Regression=find a function that fits the observations.
= =° “Close point” may be wrong due to the noise only.
= *™_Line should be influenced by the real data not the noise.

:—Ignore the errors from those point which are close.

Duality theory in the convex
optimization.

*Uniqueness: Every strictly convex constrained
optimization problem has a unique solution.

JG) <A (x)+(1=2) f(x,) forx, =Ax +(1=A)x,
*Lagrange Function.

*Dual Objective Function

*Duality Gap

*Karush-Kuhn-Tucker (KKT) conditions.A set of primal
and dual variables that is both feasible and satisfies the
KKT conditions is the optimal solution.

(i.e. constraint.dual variables=0)
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Basic Linear regression (separable
case)

* Training data:
{(xl’yl)ﬂ"‘D (xl’yl)}’ xeRn’yER
* Our goal is to find a function f(x) that as at most
edeviation from the actually obtained target )for all
the training data. At the same time as flat as possible.

* With a hyperplane( assuming linear model and the
data can be separated!)

T

f(x,a)={(w,x)+b

Primal regression problem

Linear function f taking the form:
f(x)={@w,x)+b with @€ R",be R (1)

Flatness in the equation (1) means that one seeks
small w. Formally, we can write this problem as
a convex optimization problem by:

. Ly e All pair (x, ) with
minimize E HWH € precision
s _<Wi’xi> —-b<

subject to
(w,x)+b-y <e¢
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Support Vector regression (Vapnik 1995)
(non-separable case)

* Before, we introduce the case that function f actually
exists that approximates all data pairs with & precision.
Sometimes, we may want to allow some errors.

We allow “error” g,

g ‘ Class 2
7wk

I Y

Class 1

Linear & -support vector regression

minimize ;—”w”z + CZIZ & +<&0)

Yi_<wi’xi>_b < ‘9+§i
subject to (w,x)Y+b-y, <e+ &

§.,6, 20

Define & =0 if there is no error for X . .
-minimize the error made outside of the tube.

-The parameter C to control the amount of influence of
error. C balance the two competing goals.(error and

lIwlD)
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€-intensive loss function

|§E={O for |§|S8

|§ | — &  otherwise

The Optimization problem

Lagrangian function will help us to formulate the
dual problem

The dual of the problem is :

l l *
max L = 5”(0”2 1 Cz & +<&)-
i=1
i

Y a(e—& -y, +{w,x,)+b)

! !

—2 4 (e + & +y —(@.x)=b)= D (1.5, +m &)

i=1
subject to Lagrange Multiplier : a,,a;,n,,7, >0

primal variable : @,b,&,, &
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It follows from the saddle point condition that the
partial derivations of L with respect to the primal
variables has to varnish for optimality.

I Y

(6)

calculation

L:%<w,w>+jc;+icgj

i / /

i I
o Zaig _Zaié T Zaiyi T Zai<a)"xi> +Zaib
i=1 i=1 i=1 i=1 i=1
I I I I !
St S ) S
i=1 i=1 i-1 i=1 i=1
! i
_Zm’é _Z:,’?i gi
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1 I
L:5<w,w>+25i (C-n, —a,) +
o —
= =0(from (8), C—5"—a{"=0)
!

! I
S (C-n -a) - +a,)e- +a))y,
;fl (C-n,—a;) ;(a, a;)e ;(a, a)y,

=0(from (8), C—n"-a"=0)
/

/
- Z (a,—a; Yw,x,) +z (a; —a,)b
) N J =i %’_/

—(w,w)(From (7), 0=3(a+a)x)  =0(Erom (), 3:(a]~a;)=0)
i=1 i=1

I Y

wy=2 (a,+a))e =2 (a,+a))y,

!
—Z_; (a,+a)y,

3 (a,-a)=0
a,.a; [0,C]

subject to
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Results.

From the equation (7)

I Y

We can get:

f() =3 (a, - a))x,.x) + b

How to computing b?

* At the KKT(Karush-Kuhn-Tucker) conditions: at the
optimal solution the product between dual variables
and constraints has to vanish. This means that the
Lagrange multipliers will only be non-zero for points
outside the € band. Thus these points are the support
vectors.In the SV case:
a(e-¢ -y, +{w,x,)+b)=0
a;(e+& +y,—(o,x)-b)=0 (11)
(C-a)é =0

(C—a)E =0 (12)
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How to computing b?

Firstly, only samples (Xl ,y,) with corresponding
a” =C lie outside the the &-insensitive tube around

f

Secondly, a,-a: =*0 there can never be a set of dual
variables d ., @, which are both simultaneously
nonzero.

Finally, for @ €(0,C) wehave ¢, =0

I Y

Hence b can be computed as follows :
b=y —(w,x,)—¢ fora (0,C)
b=y —(w,x)+¢& fora €(0,C) (13)

Nonlinear SVR

*Key idea:transform xi to a higher dimension to make life
easier.

-input space: the space xi are in.

-feature space: the space of ®(xi) after transformation.

*Why transform?

- Linear operation in the feature space is equivalent to
the nonlinear operation in the input space.

-make the non-separable problem separable.
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(continue)

T

Pm)
Input space Feature space

Possible problems of the transformation:
*High computation burden
SVM solved the problem:

*Kernel tricks for efficient computation.

Example Transformation

*Define the Kernel Function:
Xy Vi 2
k(|: :|,|: :|)=(1+x1y1+x2y2)
X y

2 2
*Consider the following transformation:

@({Xl }) = (l,ﬁxl,\/?xZ,x,Z,xf,\/?xle)
X,
y

d>({y‘ }) = (1,V2y,. 72y, 902 N20,9,)
2

X Yi 2
(q)([ }),(D([ })>=(1+x1y1+sz’z)
X, y

2

Sl i

So the inner product can be computed by & without
going through the mapping @(.).
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Kernel Trick

Therelationship between tle Kernelfuntionk
and themapping®(.) is:
k(x,y) = (D(x),D(y)) -

I Y

» This is known as the Kernel trick.

*We choose & instead of choosing ®(.)

*K(x,y) need to satisfy a technical condition
(Mercer Conditions) in order for ®(.) to exist.

Kernel

Which functions (x 9 x,) correspond to a dot
product in the feature space?

K (x,x,)=®(x,).® (x,)
Hilbert Schmidt Theory:

K(x,,x,)is a symmetric function.
Mercer's conditions:

K (x ,x,)=3 a,® (x,)® (x,)if

=l

[ K (x,x") f(x)f(x )dedx = 0,
sz(x)dx < o
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Linear combination of Kernels:
k(x,x):=ck (x,x)+c,k,(x,x)
Integral of Kernels:
k(x,x'):=[s(x,z)s(x',z)dz
Smola, Scholkopf and Muller(1998):
k(x,x):=hk(x—-x") if

I Y

Flkl(w) = (27[)_%.[e‘i<”””k(x)dx >0
Burges(1999): K (X, x):=k({x,x))

k(&) =0,

0. k(&) =20,

0.k(E)+ &0 k(&) =20

Non-linear SVR algorithm

Primal problem:
minimize %||w||2 FCY (& +E)
Y _<wi’q)(xi)>_b < 8+§i
subject to (w,,®(x))+b-y. <e+ &
$,6,20

l

0=3(a,~a)P(x)

i
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s = Parameters used in SV
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Non-linear SVR algorithm

similar wth (9)

L2500 - o, oS-

maximize 1 (14)

/
2(a,+a)e=) (a,+a))y,

(@ —a’)=0
subject to: g( )
a,a €[0,C]

If k(x, x') == (D(x),O(x )). Similar wih (10):
0=3(a,~a)P(x) and [(x)= (@ ~a k(x.x)+b (15)
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Cost Function

Training data:
{(x,,¥,)0r (x,,,)}, xe R",ye R
We assume that the training data has been drawn iid

from some probability distribution p(x,y). Our goal is
to find a function f(x) that minimizes a risk functional.

R[f1=[c(x,p, f(x))dp(x,y)

A possible approximationg

Remp[f] :zigc(xi’yi’f(xi))

Add a capacity control term: )
R, [f1=R,[f1+ o]

A > 0 called regulation constant.

T

One hand, we want to avoid using a very complicated
function c as this may lead to difficult optimization; on
the other hand, we should use the cost function that
suits data best. Under the assumption that the data
were idd and generated by function plus addictive noise.

c(x,y, f(x) = —log p(y - f(x)

Toes Tnction density model

48 = ek 0 = gt (L)

dE =[] 146 = exp(=[])

dg) = 32 1) = Zmexpl=)
_[H@F Hl<a expl-5)  Hle <o

““f”‘{ (=% otbervise P"ﬁ“{ cx.ut;fmn otliervise

46 = 7 ) = g xp(= )

| = i s oxp(-oom)  EfE[ 20
"‘(‘5)‘{ f=ct2) oibervis *"’('5)“{ explrsl — ) otberwise
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Table 1 Cammon loss funetions and cornesponding density models
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For the loss function:

C@J&fﬁD={0 rpy—f@l<e

c(ly-f(x)|-¢&) otherwise
Compare with € —intensive loss function

_{0 for |§|Se

|§ | — & otherwise

3

*Extend the special choice to more general convex
cost functions.

» Moreover, we*might choose different cost .
functions ¢;, ¢, and different values of g, &
for each sample. Similar with (3), we can get:

By standard Lagrange multiplier technique, exactly the
same manner as in the g-intensive loss function.

minimize Ll + 3 @(6) +7(E)

y,—(w,x;)—-b<e+¢
subjectto {(w,x,)+b—y, <e+&

&6 20




L = - Zl:(ai—a:)(aj—a:-)<xi,xj>+

Z (yi(ai - a;)_ 8(‘11' + a;)"' C(T(é:i)-"_ T(é:))

where

I Y

0= (o=
T(é)l;1 c(§)—-¢0.c($)
j:ﬂh—af)=0
subjectto azle [0,C0,.c(&)]

£ =inf{ £]C0.E(&) 2 a}
E>0

Architecture

output X v, k(xx) + b

weights

—
o

dot product (d{x)bix ) )= klxx,)

)

mapped vectors DL dx)

~J

suppor vectors K| e Xy

test wector X
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Algorithms- Interior Point Algorithms.

variable a denote vector and o ;denotes the i— th component.
o 1
minimize 5 qg(a)+c.a

subjectto Aa=b [<a<yu c,a,l,ueR", A R,be R"
*Add slack Variablesl'
minimize > qg(a)+c.a

subjecttoda=ba-g=La+t=u g,t>0
*Write the Wolfe dual.

T I I I I Y

*Get the KKT conditions
‘ .
= °Solve the Equations
= -

SMO(Sequential minimal
optimization)
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-each iteration,SMO chooses only two &; ,and find optimal value,
updates

the SVM to reflect new optimal value
- 3 components to SMO

. Analytic method to solve for two lagrange
multiplier

. Heuristic for choosing

. A method for computing bias b

(XA RRRRRRRRRRNN)




Other Algorithms

Subset selection algorithms
Inverse problems.(suitable for specific settings)

Convex combination and /,-norms.(different ways of
measuring capacity and reduction to the linear
programming)

Semiparametric modeling.(different ways of
controlling capacity and different classes).

T

conclusion

Linear operation in the feature space is equivalent
to the nonlinear operation in the input space.

key concepts of SVM
* optimization
* kernel trick

There are still a lot of open issues in SVR.
Both time complexity & storage capacity problem
are
* increasing as train data increase

e  The choice of kernel function : there are no
guidelines
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Question?
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