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Support vector machine SVMSupport vector machine SVM

•SVM maximize the margin 
around the separating
hyperplane.

•The decision function is fully 
specified by a subset of the 
training data, the support 
vectors.

IntroductionIntroduction

• Transformation with 
-linear function
-nonlinear function-Kernel.

• Nonlinear become linear boundary in the 
transformed space.

• Aim: To find the optimal Kernel or linear 
function and corresponding support vectors.
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The regression ProblemThe regression Problem

•Regression=find a function that fits the observations.

• “Close point” may be wrong due to the noise only.

-Line should be influenced by the real data not the noise.

-Ignore the errors from those point which are close.

•Uniqueness: Every strictly convex constrained 
optimization problem has a unique solution. 
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•Lagrange Function.

•Dual Objective Function

•Duality Gap

•Karush-Kuhn-Tucker (KKT) conditions.A set of primal 
and dual variables that is both feasible and satisfies the 
KKT conditions is the optimal solution.

(i.e. constraint.dual variables=0)

Duality theory in the convex Duality theory in the convex 
optimizationoptimization.
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• Training data:

• Our goal is to find a function f(x) that as at most 
εdeviation from the actually obtained target      for all 
the training data. At the same time as flat as possible.

• With a hyperplane( assuming linear model and the 
data can be separated!)
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Basic Linear regression (separable Basic Linear regression (separable 
case)case)
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Linear function  f taking the form:

Flatness in the equation (1) means that one seeks 
small ω.  Formally, we can write this problem as 
a convex optimization problem by:

All pair             with All pair             with 
εε precisionprecision
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Primal regression problemPrimal regression problem
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Support Vector regression (Support Vector regression (VapnikVapnik 1995)1995)
(non(non--separable case)separable case)
• Before, we introduce the case that function f  actually 

exists that approximates all data pairs with ε precision. 
Sometimes, we may want to allow some errors.

Linear Linear εε --support vector regressionsupport vector regression

Define               if there is no error for       .
-minimize the error made outside of the tube.
-The parameter C to control the amount of influence of 

error. C balance the two competing goals.(error and
||w||)
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εε--intensive loss functionintensive loss function
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The Optimization problemThe Optimization problem
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It follows from the saddle point condition that the 
partial derivations of L with respect to the primal 
variables has to varnish for optimality.
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Results.Results.

From the equation (7)
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• At the KKT(Karush-Kuhn-Tucker) conditions: at the 
optimal solution the product between dual variables 
and constraints has to vanish. This means that the 
Lagrange multipliers will only be non-zero for points 
outside the ε band. Thus these points are the support 
vectors.In the SV case:
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How to computing b?How to computing b?

Firstly, only samples                 with corresponding        
a lie outside the the ε-insensitive tube around  
ff.

Secondly,                   there can never be a set of dual 
variables                 which are both simultaneously 
nonzero.

Finally, for                        we have .
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Nonlinear SVRNonlinear SVR
•Key idea:transform xi to a higher dimension to make life 
easier.

-input space: the space xi are in.

-feature space: the space of Φ(xi) after transformation. 

•Why transform?

- Linear operation in the feature space is equivalent to 
the nonlinear operation in the input space. 

-make the non-separable problem separable.
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((continue)continue)

Possible problems of the transformation:

•High computation burden

SVM solved the problem:

•Kernel tricks for efficient computation.

Example TransformationExample Transformation
•Define the Kernel Function:
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Kernel TrickKernel Trick
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• This is known as the Kernel trick.

•We choose k instead of choosing Φ(.)

•K(x,y) need to satisfy a technical condition 
(Mercer Conditions) in order for Φ(.) to exist.

Which functions                  correspond to a dot 
product in the feature space?
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Linear combination of Kernels:
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NonNon--linear SVR algorithmlinear SVR algorithm
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Parameters used in SV Parameters used in SV 
RegressionRegression

NonNon--linear SVR algorithmlinear SVR algorithm
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Cost FunctionCost Function
Training data:

We assume that the training data has been drawn iid 
from some probability distribution p(x,y). Our goal is 
to find a function f(x) that minimizes a risk functional. 

A possible approximation:

Add a capacity control term:
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One hand, we want to avoid using a very complicated 
function c as this may lead to difficult optimization; on 
the other hand, we should use the cost function that 
suits data best. Under the assumption that the data 
were idd and generated by function plus addictive noise.
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For the loss function:
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Compare with function loss intensive−ε

•Extend the special choice to more general convex 
cost functions.

• Moreover, we might choose different cost 
functions            and different values of               
for each sample. Similar with (3), we can get:
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By standard Lagrange multiplier technique, exactly the 
same manner as in the ε-intensive loss function.
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AlgorithmsAlgorithms-- Interior Point Algorithms.Interior Point Algorithms.
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•Write the Wolfe dual.

•Get the KKT conditions

•Solve the Equations

SMO(Sequential minimal SMO(Sequential minimal 
optimization)optimization)

-each iteration,SMO chooses only two      ,and find optimal value, 
updates

the SVM to reflect new optimal value
- 3 components to SMO 

1. Analytic method to solve for two lagrange  
multiplier

2. Heuristic for choosing

3. A method for computing bias b

iα
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Other Algorithms

• Subset selection algorithms
• Inverse problems.(suitable for specific settings)
• Convex combination and    -norms.(different ways of 

measuring capacity and reduction to the linear 
programming)

• Semiparametric modeling.(different ways of 
controlling capacity and different classes).

1l

conclusionconclusion

• Linear operation in the feature space is equivalent 
to the nonlinear operation in the input space. 

• key concepts of SVM
• optimization
• kernel trick

• There are still a lot of open issues in SVR.
Both time complexity &    storage capacity problem 

are
• increasing as train data increase
• The choice of kernel function : there are no 

guidelines
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Question?Question?

Thank you!Thank you!


