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Support vector machines

CS 3750 Advanced Machine Learning

Term Project proposals

Due: Monday, November 10
Proposal: 1-2 pages long

1. Outline of a problem you want to address, type of data you 
have available. Why is the problem important?

2. Learning methods you plan to develop and implement for 
the problem.  References to previous work.

3. How do you plan to test, compare learning approaches
4. Schedule of work (approximate timeline of work)

Projects: 
– Presentation
– Report:  due on December 5, 2003
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Outline

Outline:
• Support vector machines
• Linearly separable classes. Algorithms.
• Maximum margin hyperplane.
• Support vectors.
• Support vector machines.

• Extensions to the non-separable case.
• Kernel functions.
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Linearly separable classes

There is a hyperplane that separates training instances with no 
error

00 =+ wT xw

Hyperplane:

Class  (+1)

00 >+ wT xw

Class  ( -1)

00 <+ wT xw
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Algorithms for linearly separable set

• Hyperplane

• We can use gradient methods for sigmoidal switching 
functions and learn the weights

• Recall that we learn the linear decision boundary
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Algorithms for linearly separable sets

• Linear program solution:
– Find weights that satisfy the following constraints:

Property: if there is a hyperplane separating the examples, 
the linear program finds the solution

Other methods:
Fisher linear discriminant
Perceptron algorithm

00 ≥+ wi
T xw For all i, such that 1+=iy
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Optimal separating hyperplane

• There are multiple hyperplanes that separate the data points
– Which one to choose?  

• Maximum margin choice: the maximum distance of               
– where       is the shortest distance of a positive example 

from the hyperplane (similarly       for negative examples)
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Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances)

• These are called support vectors
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Finding maximum margin hyperplanes

• Assume that examples in the training set are                 such 
that  

• Assume that all data satisfy:

• The inequalities can be combined as:

• Equalities define two hyperplanes:
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Finding the maximum margin hyperplane

• Geometrical margin:
– measures the distance of a point x from the hyperplane
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The distance is

Width of the margin:
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Maximum margin hyperplane

• We want to maximize

• We do it by minimizing

– But we also need to enforce the constraints on points:
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Maximum margin hyperplane

• Solution: Incorporate constraints into the optimization
• Optimization problem (Lagrangian)

• Minimize with regard to               (primal variables)
• Maximize with regard to         (dual variables) 
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Max margin hyperplane solution
• Set derivatives to 0 (Kuhn-Tucker conditions)

• Now we need to solve for Lagrange parameters (Wolfe dual)

• Quadratic optimization problem: solution        for all i 
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Maximum hyperplane solution

• The resulting parameter vector        can be expressed as:

• The parameter         is obtained through Karush-Kuhn-Tucker 
conditions 

Solution properties
• for all points that are not on the margin
• is a linear combination of support vectors only
• The decision boundary:
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Support vector machines

• The decision boundary:

• The decision:

Note:
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, optimization depends on 
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Extension to a linearly non-separable case

• Idea: Allow some flexibility on crossing the separating 
hyperplane
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Extension to the linearly non-separable case

• Relax constraints with variables

• Error occurs  if             ,             is the upper bound on the 
number of errors 

• Introduce a penalty for the errors
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The parameter         is obtained through KKT conditions 

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

• Dual form after              are expressed (     s cancel out)  
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Support vector machines

• The decision boundary:

• The decision:

Note:
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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