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Problem Overview

We have some data D=(D1,D2,…,Dm)
with attributes X=(x1,x2,…,xn)

We will try to model the data using Bayesian 
networks. 
The result is a model of the n distributions of 
attributes in the data.

Model has parameters Θ=(Θ1, Θ2,... ,Θn).
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Problem Overview

First model may not be the best model.
We want to find the parameters of the model 
that describe the data the best.
In addition, the structure of the model may 
need improvement.
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Learning Objectives

Task 1) Learn the parameters     which best 
describes the data.
Task 2) Learn the structure of the model which 
best represents the data.

Task 1 is pretty easy when the data is complete.
Task 2 is usually not as easy, the space of possible 
models is too large to do a systematic search.

Θ̂
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First Task – Learning Data Parameters

Consider the Bayesian network we attempt to 
optimize

Has a structure Si , the set of all possible 
structures
Given data D, a complete dataset
The probability of event E occurring given a model 
with structure Si operating on data D is given as 
follows:
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You have to be kidding me!

First Task – Learning Data Parameters

Instead, approximate P(E|D) by choosing only the 
most important models in S

Achievable through MAP estimate of P(Si|D)
Some people use Gibbs Sampling and other Monte Carlo 
methods to reduce S to a subset of S

iii SiSiSi dSDPSEPDSEP ΘΘΘ= ∫
Θ

),|(),|(),|(

)|(),|()|(
1

DSPDSEPDEP i

S

i
i∑

=

=



4

Apply Bayes’ Rule

It’s the posterior distribution for each structure given data
If we maximize this, we can get away without having to 
exhaustively sum over all possible structures a model can take.

Computing the evidence and prior is easy. But how is the 
likelihood computed?
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Decomposing the marginal likelihood

Likelihood of data given structure is given by

We can make several assumptions that simplify the 
decomposition of the likelihood 

First assumption: the probability of the data given the 
structure and parameters of the model is a product of 
independent factors. 
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When you make assumptions….

Second Assumption (Parameter Independence): 
Parameters associated with each attribute are 
probabilistically independent of the parameters for other 
attributes. 
Parameters associated with an attribute given an instance 
of its parents are independent of parameters for that 
attribute given a different instance of its parents.

Use this notion to expand from our first assumption…

From first assumption:

Let ri = number of values that attribute xi can take
qi= number of possible parent combinations
Nijk= number of cases in D where xi has value k 

and parents with values j.
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Third assumption (Parameter modularity):
If an attribute has the same parents in two distinct networks, 
then the parameters for that attribute are identical in both 
networks.
For simplicity’s sake, lets assume that the prior distribution of 
parameters comes from the Dirichlet distribution.

The set of parameters for the model Θ
has a set of Dirichlet distributions
associated with it, with parameters α
as long as the following holds:
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Finally, the assembly of assumptions
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Finally, the marginal likelihood

We can use the marginal likelihood to score 
the model.

Score consists of just factors multiplied together. 
The score decomposes amongst variables.

Learning models then amounts to searching 
the space to maximize the score. 

Changes in the models alter few terms
Scores are rapidly computable if factors are 
cached
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Life Isn’t Always Perfect

iii SiSiSi dSDPSEPDSEP ΘΘΘ= ∫
Θ
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Tons of real-world applications have problems with 
missing values in the data.

Problems:
We lose that nice decomposition of the probability of data
The probability of parameters is also no longer a product of 
independent terms.

These integrals can no longer be solved in closed form!

ΘΘΘ= ∫
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But don’t worry…
We can try to approximate the prediction of an event 
given a model and data. 

Maximizes 
Use EM or gradient ascent to estimate the parameters.

In the case of the probability of data given a structure
We can estimate the marginal likelihood

Stochastic simulation
Laplace Approximations
Monte Carlo Methods 
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Structural EM Algorithm

So we no longer have a complete dataset. 
D now consists of two components

H, the hidden attributes
O, the observable attributes

Our new goal is to find a MAP model
Maximizing 

We just have to assume we can either compute or estimate the 
marginal likelihood at all times for this to work.
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Structural EM Algorithm
Procedure Bayesian-SEM(S0)

For (n=0 until convergence)
Compute posterior over parameters

E-Step: 

For each S compute

M-Step:

Choose Si+1 that maximizes Q(S|Si)

If Q(S|Si) = Q(Si+1|Si) then

Return Si
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Advantages of Structural EM
Structural EM is always making progress.

Let S0, S1,… be the sequence of model structures examined 
by the Structural EM algorithm

The difference in the expected score is always positive

Proof (Friedman)
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Progress of Structural EM

As long as we choose models on successive iterations 
which maximizes the expected score at each iteration, 
then we are guaranteed to be making an 
improvement.
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Applying the Structural EM Algorithm

In every E-step, we evaluate the expected score 
Q(S:Si) for each model we examine.

The expected score assigns values to H
Data is complete when we have P(h,o|Si) 
This means the same decomposition is possible after all 

Ways to compute E[log Fi(si)]? 
Many ways to approximate it. For instance, log Fi(E[si])                                 
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Computing Probability Over Hidden Variables

In the E-Step, we compute the probability of 
assignments to hidden variables, P(H|o,Si). 

If we want to compute expectation of this term, we can 
learn the MAP parameters for Si

Use EM, gradient ascent, etc. to find an approximation
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Structural EM Algorithm-Revised
Procedure Bayesian-SEM(S0)

For (n=0 until convergence)
Compute MAP parameters     for 

E-Step: 

For each S compute

M-Step:

Choose Si+1 that maximizes Q(S|Si)

If Q(S|Si) = Q(Si+1|Si) then

Return Si
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So how does it change structure?

You have to choose a search method for the 
algorithm to search for new models. 

New graph structures can be generated by adding, 
removing, or reversing an arc. 

This typically doesn’t change a lot of factors, allowing 
for efficient recomputation of scores for new but 
differently structured models.

Computing E[log F(s)]

The last remaining question: how to properly 
approximate E[log F(s)]?

Linear approximation isn’t suited well to exponential 
functions
We can do better by fitting a Gaussian approximation over 
the values of s. 

May be easy or hard to evaluate, depending on the 
dimension of s
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Structural EM without the inference

Singh(1997) proposed a way to learn Bayesian 
network structure by sampling from observed data.

Create M datasets by sampling M values for each missing 
variable from prior distributions of each attribute.
For every dataset in M, 

compute the structure of the model Si that maximizes P(Si|D), i.e. 
the MAP structure model given data. 
Use EM to learn the conditional probabilities given the observed
data and structure Si

Fuse the resulting structures to form a single Bayesian 
network, and set Θ to be the weighted average of 
parameters over the M datasets.
If no convergence occurs, re-sample from the new 
parameters Θ, M new datasets. 

Structural EM Through Sampling

The main differences between Singh’s and 
Friedman’s EM algorithms is that the search space in 
Singh’s version is restricted to a very small set of 
model structures, whereas Friedman’s algorithm is 
exposed to a wide number of possibilities
It is also a bit easier to implement Singh’s version; 
much less approximation happening
But both approaches generally make the same 
assumptions about how the data and model structure 
interact


