

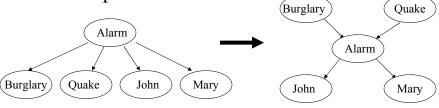
Problem Overview

- We have some data \mathbf{D} =(D₁,D₂,...,D_m)
- with attributes $X=(x_1,x_2,...,x_n)$
 - ☐ We will try to model the data using Bayesian networks.
 - \Box The result is a model of the *n* distributions of attributes in the data.
 - Model has parameters $\Theta = (\Theta_1, \Theta_2, ..., \Theta_n)$.

Problem Overview

- First model may not be the best model.
- We want to find the parameters of the model that describe the data the best.

■ In addition, the structure of the model may need improvement.



Learning Objectives

- Task 1) Learn the parameters ô which best describes the data.
- Task 2) Learn the structure of the model which best represents the data.
 - □ Task 1 is pretty easy when the data is complete.
 - □ Task 2 is usually not as easy, the space of possible models is too large to do a systematic search.

First Task – Learning Data Parameters

- Consider the Bayesian network we attempt to optimize
 - \square Has a structure $S_i \in S$, the set of all possible structures
 - \square Given data D, a complete dataset
 - \Box The probability of event E occurring given a model with structure S_i operating on data D is given as follows:

$$P(E \mid D) = \sum_{i=1}^{S} P(E \mid S_i, D) P(S_i \mid D)$$

You have to be kidding me!

First Task – Learning Data Parameters

$$P(E \mid D) = \sum_{i=1}^{S} P(E \mid S_i, D) P(S_i \mid D)$$

$$P(E \mid S_i, D) = \int_{\Theta} P(E \mid \Theta_{S_i}, S_i) P(\Theta_{S_i} \mid D, S_i) d\Theta_{S_i}$$

- Instead, approximate P(E|D) by choosing only the most important models in *S*
 - \square Achievable through MAP estimate of $P(S_i|D)$
 - ☐ Some people use Gibbs Sampling and other Monte Carlo methods to reduce S to a subset of S

Apply Bayes' Rule

$$P(E \mid D) = \sum_{i=1}^{S} P(E \mid S_i, D) P(S_i \mid D)$$

$$P(S_i \mid D) = \frac{P(D \mid S_i) P(S_i)}{P(D)}$$

- ☐ It's the posterior distribution for each structure given data
 - If we maximize this, we can get away without having to exhaustively sum over all possible structures a model can take.
- ☐ Computing the evidence and prior is easy. But how is the likelihood computed?

Decomposing the marginal likelihood

Likelihood of data given structure is given by

$$P(D \mid S_i) = \int_{\Omega} P(D \mid S_i, \Theta) P(\Theta \mid S_i) d\Theta$$

- We can make several assumptions that simplify the decomposition of the likelihood
 - ☐ First assumption: the probability of the data given the structure and parameters of the model is a product of independent factors.

$$P(\boldsymbol{D} \mid S, \Theta) = \prod_{h=1}^{m} P(D_h \mid S, \Theta) = \prod_{h=1}^{m} \prod_{j=1}^{n} P(x_j^h \mid parents_j^h, \Theta)$$

When you make assumptions....

- Second Assumption (Parameter Independence):
 - ☐ Parameters associated with each attribute are probabilistically independent of the parameters for other attributes.
 - □ Parameters associated with an attribute given an instance of its parents are independent of parameters for that attribute given a different instance of its parents.
 - Use this notion to expand from our first assumption...

■ From first assumption:

$$P(\mathbf{D} \mid S, \Theta) = \prod_{h=1}^{m} \prod_{i=1}^{n} P(x_i^h \mid parents_i^h, \Theta)$$

Let r_i = number of values that attribute x_i can take q_i = number of possible parent combinations N_{ijk} = number of cases in D where x_i has value k and parents with values j.

$$= \prod_{i}^{n} \prod_{j}^{q_{i}} \prod_{k}^{r_{i}} P(x_{i} = k \mid parents_{i} = j, \Theta)^{N_{ijk}}$$

$$= \prod_{i}^{n} \prod_{i}^{q_{i}} \prod_{k}^{r_{i}} \Theta_{ijk}^{N_{ijk}}$$

- Third assumption (Parameter modularity):
 - ☐ If an attribute has the same parents in two distinct networks, then the parameters for that attribute are identical in both networks.
 - ☐ For simplicity's sake, lets assume that the prior distribution of parameters comes from the Dirichlet distribution.
 - The set of parameters for the model $\Theta = (\Theta_{ij1},...,\Theta_{ijr_i})$ has a set of Dirichlet distributions associated with it, with parameters $\alpha = (\alpha_{ijk})_{i=1,...,n;j=1,...,q_i;k=1,...,r_i}$ as long as the following holds:

$$P(\Theta_{ij1},...,\Theta_{ijr_i} \mid S) = Dirichlet(\Theta_{ij1},...,\Theta_{ijr_i} \mid \alpha)$$

$$= \frac{\Gamma(\sum_{k=1}^{r_i} \alpha_{ijk})}{\prod_{r_i} \Gamma(\alpha_{ijk})} \prod_{k=1}^{r_i} \Theta_{ijk}^{\alpha_{ijk}-1}$$

■ Finally, the assembly of assumptions

$$P(D \mid S_{i}) = \int_{\Theta} P(D \mid S_{i}, \Theta) P(\Theta \mid S_{i}) d\Theta$$

$$= \prod_{i}^{n} \prod_{j}^{q_{i}} \prod_{k}^{r_{i}} \Theta_{ijk}^{N_{ijk}} \cdot \frac{\Gamma(\sum_{k=1}^{r_{i}} \alpha_{ijk})}{\prod_{k=1}^{r_{i}} \Gamma(\alpha_{ijk})} \prod_{k=1}^{r_{i}} \Theta_{ijk}^{\alpha_{ijk}-1} d\Theta$$

$$= \prod_{i}^{n} \prod_{j}^{q_{i}} \frac{\Gamma(\sum_{k=1}^{r_{i}} \alpha_{ijk})}{\prod_{k=1}^{r_{i}} \Gamma(\alpha_{ijk})} \int_{k=1}^{r_{i}} \Theta_{ijk}^{N_{ijk}+\alpha_{ijk}-1} d\Theta$$

$$= \prod_{i}^{n} \prod_{j}^{q_{i}} \frac{\Gamma(\alpha_{ij})}{\prod_{k=1}^{r_{i}} \Gamma(\alpha_{ijk})} \cdot \frac{\prod_{k=1}^{r_{i}} \Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ij} + N_{ij})}$$

Finally, the marginal likelihood

$$P(D \mid S_i) = \prod_{i}^{n} \prod_{j}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \cdot \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

- We can use the marginal likelihood to score the model.
 - □ Score consists of just factors multiplied together.
 - ☐ The score decomposes amongst variables.
- Learning models then amounts to searching the space to maximize the score.
 - □ Changes in the models alter few terms
 - ☐ Scores are rapidly computable if factors are cached

Life Isn't Always Perfect

- Tons of real-world applications have problems with missing values in the data.
 - □ Problems:
 - We lose that nice decomposition of the probability of data
 - The probability of parameters is also no longer a product of independent terms.

$$P(E \mid S_i, D) = \int_{\Theta} P(E \mid \Theta_{S_i}, S_i) P(\Theta_{S_i} \mid D, S_i) d\Theta_{S_i}$$

$$P(D \mid S_i) = \int_{\Theta} P(D \mid S_i, \Theta) P(\Theta \mid S_i) d\Theta$$

• These integrals can no longer be solved in closed form!

м

But don't worry...

■ We can try to approximate the prediction of an event given a model and data.

$$P(E \mid S_i, D) \approx P(E \mid S_i, \hat{\Theta})$$

- $\hat{\Theta}$ Maximizes $P(\Theta \mid S_i, D) \propto P(D \mid \Theta, S_i) P(\Theta \mid S_i)$
 - ☐ Use EM or gradient ascent to estimate the parameters.
- In the case of the probability of data given a structure
 - ☐ We can estimate the marginal likelihood
 - Stochastic simulation
 - Laplace Approximations
 - Monte Carlo Methods

Structural EM Algorithm

- So we no longer have a complete dataset.
 - \square **D** now consists of two components
 - *H*, the hidden attributes
 - 0, the observable attributes
 - ☐ Our new goal is to find a MAP model
 - Maximizing $P(D \mid S_i)P(S_i)$
 - We just have to assume we can either compute or estimate the marginal likelihood at all times for this to work.

Structural EM Algorithm

- Procedure Bayesian-SEM(S₀)
 - ☐ For (n=0 until convergence)
 - lacktriangle Compute posterior over parameters $P(\Theta^{S_i} \mid S_n^h, o)$
 - E-Step:
 - □ For each S compute

$$Q(S | S_i) = E[\log P(H, o, S_i) | S_i^n, o]$$

= $\sum_{h} P(h | o, S_i^n) \log P(h, o, S_i)$

- M-Step:
 - $\hfill\Box$ Choose $\mathbf{S_{i+1}}$ that maximizes $\mathbf{Q}(\mathbf{S} \, \big| \, \mathbf{S_i})$
- If $Q(S|S_i) = Q(S_{i+1}|S_i)$ then
 - \square Return S_i

Advantages of Structural EM

- Structural EM is always making progress.
 - \square Let S₀, S₁,... be the sequence of model structures examined by the Structural EM algorithm

Via Jensen's Inequality

• The difference in the expected score is always positive

$$\log P(o, S_i^{n+1}) - \log P(o, S_i^n) \ge Q(S_i^{n+1} \mid S^n) - Q(S^n \mid S^n)$$

Proof (Friedman)

$$\log \frac{P(o, S_{i}^{n+1})}{P(o, S_{i}^{n})} = \log \sum_{h} \frac{P(h, o, S_{i}^{n+1})}{P(o, S_{i}^{n})} \cdot \frac{P(h \mid o, S_{i}^{n})}{P(h \mid o, S_{i}^{n})}$$

$$= \log \sum_{h} P(h \mid o, S_{i}^{n}) \cdot \frac{P(h, o, S_{i}^{n+1})}{P(h, o, S_{i}^{n})}$$

$$\geq \sum_{h} P(h \mid o, S_{i}^{n}) \log \frac{P(h, o, S_{i}^{n+1})}{P(h, o, S_{i}^{n})}$$

Progress of Structural EM

$$\log \frac{P(o, S_{i}^{n+1})}{P(o, S_{i}^{n})} \geq \sum_{h} P(h \mid o, S_{i}^{n}) \log \frac{P(h, o, S_{i}^{n+1})}{P(h, o, S_{i}^{n})}$$

$$= E[\log \frac{P(H, o, S_{i}^{n+1})}{P(H, o, S_{i}^{n})} \mid S_{i}^{n}, o]$$

$$= Q(S_{i}^{n+1} \mid S^{n}) - Q(S^{n} \mid S^{n})$$

As long as we choose models on successive iterations which maximizes the expected score at each iteration, then we are guaranteed to be making an improvement.

Applying the Structural EM Algorithm

- In every E-step, we evaluate the expected score $Q(S:S_i)$ for each model we examine.
 - \square The expected score assigns values to H
 - Data is complete when we have $P(\mathbf{h,o}|S_i)$
 - This means the same decomposition is possible after all

$$E[\log P(H, o \mid S_i)] = \sum_i E[\log F_i(s_i)]$$

- Ways to compute $E[\log F_i(s_i)]$?
 - \square Many ways to approximate it. For instance, log $F_i(E[s_i])$

Computing Probability Over Hidden Variables

- In the E-Step, we compute the probability of assignments to hidden variables, $P(H|o,S_i)$.
 - \Box If we want to compute expectation of this term, we can learn the MAP parameters for S_i

$$P(H \mid S_i, o) \approx P(H \mid S_i, \hat{\Theta})$$

 \square Use EM, gradient ascent, etc. to find an approximation

Structural EM Algorithm-Revised

- Procedure Bayesian-SEM(S₀)
 - □ For (n=0 until convergence)
 - lacksquare Compute MAP parameters $\hat{oldsymbol{\Theta}}$ for $P(\hat{oldsymbol{\Theta}}^{S_i} \,|\, S_n^h, o)$
 - E-Step:
 - □ For each S compute

$$Q(S \mid S_i) = \sum_{i} E[\log F_i^M(s_i^M) \mid S_i^n, o, \hat{\Theta}]$$

- M-Step:
 - $\hfill\Box$ Choose S_{i+1} that maximizes $Q(S \,|\, S_i)$
- If $Q(S|S_i) = Q(S_{i+1}|S_i)$ then
 - \square Return S_i

м

So how does it change structure?

- You have to choose a search method for the algorithm to search for new models.
 - □ New graph structures can be generated by adding, removing, or reversing an arc.
 - This typically doesn't change a lot of factors, allowing for efficient recomputation of scores for new but differently structured models.

Computing E[log F(s)]

- The last remaining question: how to properly approximate $E[\log F(s)]$?
 - ☐ Linear approximation isn't suited well to exponential functions
 - \square We can do better by fitting a Gaussian approximation over the values of **s**.

$$E[\log F(s)] \approx \int \log F(s) \varphi(s \mid E[s], \Sigma[s]) ds$$

☐ May be easy or hard to evaluate, depending on the dimension of **s**

Structural EM without the inference

- Singh(1997) proposed a way to learn Bayesian network structure by sampling from observed data.
 - ☐ Create M datasets by sampling M values for each missing variable from prior distributions of each attribute.
 - ☐ For every dataset in M,
 - lacksquare compute the structure of the model S_i that maximizes $P(S_i|D)$, i.e. the MAP structure model given data.
 - Use EM to learn the conditional probabilities given the observed data and structure S_i
 - □ Fuse the resulting structures to form a single Bayesian network, and set **Θ** to be the weighted average of parameters over the M datasets.
 - □ If no convergence occurs, re-sample from the new parameters **Θ**, M new datasets.

Structural EM Through Sampling

- The main differences between Singh's and Friedman's EM algorithms is that the search space in Singh's version is restricted to a very small set of model structures, whereas Friedman's algorithm is exposed to a wide number of possibilities
- It is also a bit easier to implement Singh's version; much less approximation happening
- But both approaches generally make the same assumptions about how the data and model structure interact