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Learning probability distribution

Basic learning settings:
* A setof random variables X={X,X,,..., X}
* A model of the distribution over variables in X

with parameters ©
« Data D={D,D,,.,D,}

st D =(x],x5,...x))

Objective: find parameters © that describe the data
Assumptions considered so far:

— Known parameterizations

— No hidden variables

— No-missing values
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Hidden variables

Modeling assumption:

Variables X={X,,X,,...,X,} are related through hidden
variables

Why to add hidden variables?
* More flexibility in describing the distribution P(X)
* Smaller parameterization of P(X)

— New independences can be introduced via hidden

variables
Example: Hidden class variable
» Latent variable models ¢
— hidden classes (categories) P(X|C =1i)
X
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Hidden variable model. Example.

» We want to represent the probability model of a population
in a two dimensional space X ={X,,X,}

Observed data
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Hidden variable model

* We want to represent the probability model of a population
in a two dimensional space X ={X,,X,}

Observed data Model : 3 Gaussians with
) a hidden class variable
: | P©)
E C
s P(X|C =)
0.5 X
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Mixture of Gaussians
Probability of the occurrence of a data point x
1s modeled as P(C)
k
p(x)=) p(C=ip(x|C =i ®cC
i=1
where p(X|C=i)
p(C =1i)
O x

= probability of a data point coming
from class C=i
p(x|C=i)=N@p,XZ,)
= class-conditional density (modeled as Gaussian)
for class 1
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Mixture of Gaussians

 Density function for the Mixture of Gaussians model
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Naive Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of
parameters defining P(X)

Example:
» Naive Bayes model with a hidden class variable

Hidden class variable

\ ¢ Attributes are independent

given the class

O

X, X, .. X

n

* Useful in customer profiles
— Class value = type of customers
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Missing values

A set of random variables X={X,X,,....X,}
e Data D={D,D,,.,D,}
* But some values are missing

D, =(x],x5,...x})

Missing value of X,

D,y =(xhh..ox})

Missing values of X, X,

Etc.

* Example: medical records
« We still want to estimate parameters of P(X)
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Density estimation

~

Goal: Find the set of parameters @
Estimation criteria:
— ML max p(D|0,¢)
—Bayesian P(©|D,¢)
Optimization methods for ML: gradient-ascent, conjugate
gradient, Newton-Rhapson, etc.

* Problem: No or very small advantage from the structure of the
corresponding belief network

Expectation-maximization (EM) method
— An alternative optimization method
— Suitable when there are missing or hidden values
— Takes advantage of the structure of the belief network
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General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the

following two steps:
Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables
with expectations for the current set of parameters @'

2. Maximization step. Compute the new estimates of @ for
the completed data

Stop when no improvement possible
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EM

Let H—be a set of all variables with hidden or missing values
Derivation

P(H,D|0©,5)=P(H|D,0,5)P(D]0,$)
log P(H,D|0®,{)=1log P(H |D,0,{)+1log P(D|0,¢)
log P(D|0®,¢)=1log P(H,D|®,)—1log P(H | D,0,¢)

og-likelihood of data
B= Log-likelihood of d
Average both sides with P(H | D,0',§) for @'

EH\D,@' log P(D|0O,¢) = EH|D,®' log P(H,D|0,8)— EH\D,@' log P(H | ©,¢)

log P(D[0,5)=0(0|0")+H(©|06")

Log-likelihood of data
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EM algorithm

Algorithm (general formulation)

Initialize parameters ©®
Repeat
Set O'=0
1. Expectation step

0©]0")=Ey), o log P(H,D|0,5)
2. Maximization step

® =arg max Q(0O |O")

&)

until no or small improvementin ® (® = ©"')

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?
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EM algorithm

* Why is the EM algorithm correct?

¢ Claim: maximizing Q improves the log-likelihood
[(©)=0(0[06')+H(®|06")

Difference in log-likelihoods (current and next step)

[(©)-1(0")=0(0]0")-0(0'6")+H(®|0")-H(0'6")

Subexpression H(® |0')-H(O®'1©')>0

Kullback-Leibler (KL) divergence (distance between 2 distributions)
KL(P|R)= Z P, log R— >0 [salways positive !!!

H(©]0") = EH\DG) log P(H |©,£)=~) p(H | D,0")log P(H | ©,¢)

| P(H|©.8)

H(@®©|®)-H(®'0)=> P(H|D,0"log
(I)(I)Z(I )P(H|®§)
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EM algorithm

Difference in log-likelihoods
[(©)-1(0')=0(0]0")-0(0'6")+H(®|0")-H(0'06")
[(©)-1(0")20(0|6")-0(6'0")
Thus
by maximizing Q we maximize the log-likelihood
[(©)=0(0]0")+H(O]0)
EM is a first-order optimization procedure

* Climbs the gradient
* Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages

Key advantages:
* In many problems (e.g. Bayesian belief networks)

0(@[0")=E, e log P(H,D[0,5)

— has a nice form and the maximization of Q can be carried in
the closed form

* No need to compute Q before maximizing
» We directly optimize

— use quantities corresponding to expected counts
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Naive Bayes with a hidden class and
missing values

Assume:

« P(X) is modeled using a Naive Bayes model with hidden class
variable

» Missing entries (values) for attributes in the dataset D

Hidden class variable

(€ Attributes are independent
/g \\ given the class
O
X, X, ... X,
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EM for the Naive Bayes

* We can use EM to learn the parameters
0(00") = E, 0 log P(H,D|©,&)

* Parameters:

7 ; prior on class j

0, probability of an attribute i having value k given class j
* Indicator variables:

o jl for example /, the class is j ; if true (=1) else false (=0)

o ,.jkl for example /, the class is j and the value of attrib i is &

because the class is hidden and some attributes are missing, the
values (0,1) of indicator variables are not known; they are
hidden

H — a collection of all indicator variables
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EM for the Naive Bayes model

» We can use EM to do the learning of parameters
00]0")=Ey e log P(H,D|0,5)

N ; ,
log P(H,D|0,5) =log [ [T~} TTT105
=1 ik

N
D> (Silogm, +).> 5, log,,)
=1 j ik

1 i

N
Eype 10gP(H,D|©,E)=> "> (Ey o (S)10gr, + YD Eyyp o (571086,
ik

=
EH\D,Q'(5;): p(C,=j|D,,0" Substitutes 0,1
Eype (51;'1() =p(X, =k,C, =j|D,,0" with expected value

CS 3750 Machine Learning

EM for Naive Bayes model

» Computing derivatives of @ for parameters and setting it to 0

we get: v ) N,
ﬂ.j = J ijk noo
N Ny
k=1
~ N . N
N, =2 Eupe(6))=2, p(C,=j|D,0")

1 /=1

=T

N N
Nijk :Z EH\D,@'(aék) = p(X, =k,C,=j|D,0"
=1

I=1
* Important:
— Use expected counts instead of counts !!!
— Re-estimate the parameters using expected counts
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EM for BBNs

* The same result applies to learning of parameters of any
Bayesian belief network with discrete-valued variables

000" =Ey o log P(H,D|0,5)

~

ijk L
Oy = ~— «— Parameter value maximizing Q

14

> N

k=1
~ I ! . I
Ny :Zp(xi =k,pa, =j|D",0"
I=1
may require inference

* Again:
— Use expected counts instead of counts
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Gaussian mixture model

Probability of occurrence of a data point x

is modeled as P(C)
p(x) =2 p(C=ipx|C=i) C

where - p(X|C=i)
p(C =1i) X

= probability of a data point coming
from class C=i
p(X | C= i) ~ N(uiazi)
= class conditional density (modeled as a Gaussian)
for class I
Remember: C is hidden !!!!
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Generative Naive Bayes classifier model

* Generative classifier model based on the Naive Bayes
* Assume the class labels are known. The ML estimate is

21

e class C
~ N,
7, =—t

N C=1 C=2
~ 1
B, =— X;

N, J:Cy=i ’

n,X, n,,x,

~ 1 T
Y =— X.—u.)(x.—nu.
1 Nijcl:i( J uz)( J l‘l’z)
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Gaussian mixture model

* In the Gaussian mixture Gaussians are not labeled
* We can apply EM algorithm:
— re-estimation based on the class posterior

1 ' C =il0® X CZi,@'
hy = p(C, =i|x,,0" = —PE=1O)Ptu |G, )

Zp(cl =u|0")p(x, |C, =u,0")

u=l1

N.=> h
i z] 11\

Count replaced with the expected count

B, = _z hilx‘
‘:_Zhll(x ll'z (X _ll'z)
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Gaussian mixture algorithm

Special case: fixed covariance matrix for all hidden groups
(classes) and uniform prior on classes

Algorithm:
Initialize means p, for all classes i
Repeat two steps until no change in the means:

1. Compute the class posterior for each Gaussian and each
point (a kind of responsibility for a Gaussian for a point)
p(C, =i[®Yp(x, [C,=i,0")
Z p(C=ul®)p(x,|C,=u,0")

2. Move the means of the Gaussians to the center of the data,
weighted by the responsibilities ul

Responsibility: hy =

il X 1
New mean: p,= =
1

N
> h,
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Gaussian mixture model - example

251
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Gaussian mixture example

CS 3750 Machine Learning

Gaussian mixture model. Gradient ascent.

* A set of parameters

© = 1), 7y L ooty |
Assume unit variance terms and fixed priors

p(C)
@ c

P(x|C=i)=Q2r)" exp{—%”x —,ul.”z} p(x|C)

o 1/2 1 2 O )
P(D|©)=]] 2 7,(27) exp{—gllxl — i }

=1 i=1

N m 1
1©)=>"log ¥ 7,(27)™""? exp{— 5||x, . ul.||2}

=1 i=1
01(®)

N
= Z hy(x, — ;) - very easy on-line update
ou, I=1
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EM versus gradient ascent

Gradient ascent EM

N
ﬂi(_ﬂi+azhi1(xl_/“li) I
=1

—
B Z hy

Learning rate No learning rate

2 2
-

Small pull towards distant Renormalized — big jump in the
uncovered data first step
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K-means approximation to EM

Expectation-Maximization:

* posterior measures the responsibility of a Gaussian for every point
p(C,=il®Y)p(x,|C,=1,0")

Y p(C=ul0)p(x,|C =u,0

K- Means =

* Only the closest Gaussian is made responsible for a point

hy, =

i

h, =1 Ifiis the closest Gaussian
h; =0 Otherwise
N
Re-estimation of means > ohyx,

p, o= L= lv
2 ha
1=1
» Results in moving the means of Gaussians to the center of the
data points it covered in the previous step
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K-means algorithm

Useful for clustering data:
» Assume we want to distribute data into & different groups

— Similarity between data points is measured in terms of the
distance

— Groups are defined in terms of centers (also called means)

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:

— Partition the data according to the current means (using
the similarity measure)

— Move the means to the center of the data in the current
partition
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K-means algorithm

* Properties

— converges to centers minimizing the sum of center-point
distances (local optima)

— The result may be sensitive to the initial means’ values

* Advantages:
— Simplicity
— Generality — can work for an arbitrary distance measure

* Drawbacks:
— Can perform poorly on overlapping regions
— Lack of robustness to outliers (outliers are not covered)
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