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Advanced Machine Learning

CS 3750 Advanced Machine Learning

Administration
Study material
• Handouts, course readings
• Primary textbook:

– Friedman, Hastie, Tibshirani. Elements of statistical 
learning. Springer, 2001.

• Other books:
– C. Bishop.  Neural networks for pattern recognition. Oxford 

U. Press, 1996.
– Duda, Hart, Stork. Pattern classification. 2nd edition. J 

Wiley and Sons, 2000.
– M. Jordan. Graphical models. unpublished
– B. Scholkopf and A. Smola. Learning with kernels. MIT 

Press, 2002.  
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Administration
• Classes:

– Lectures
– Paper discussions/Paper presentations

• No Homeworks and Exams
• Projects: 2 projects

– Midterm project (assigned)
– Final project (student writes a proposal)

• Grading: 
– Projects
– Paper presentations/ discussions

CS 3750 Advanced Machine Learning

Tentative topics

• Review of density estimation and classification methods.
• Ridge regression, regularization, prior smoothing.
• Graphical models of multivariate distributions. 

– Directed and undirected models.
– Inference.
– Learning of parameters and structure.

• Variational approximations for inference and learning. 
– Mean-field approximations. Variational Bayes.

• Kernel methods
– Kernel methods, Kernel-PCA, string kernels, etc.  
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD =
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Density estimation

Types of density estimation:
Parametric
• the distribution is modeled using a set of parameters           

• Example: mean and covariances of multivariate normal
• Estimation: find parameters       that fit the data D the best
Non-parametric
• The model of the distribution utilizes all examples in D
• As if all examples were parameters of the distribution
• Examples: Nearest-neighbor
Semi-parametric

Θ
)|( ΘXp
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Density estimation

Types of density estimation:
Parametric
• the distribution is modeled using a set of parameters           

• Example: mean and covariances of multivariate normal
• Estimation: find parameters       that fit the data D the best
Non-parametric
• The model of the distribution utilizes all examples in D
• As if all examples were parameters of the disrtibution
• Examples: Nearest-neighbor
Semi-parametric
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Parametric density estimation

In this lecture we consider parametric density estimation
Basic settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

Objective: find parameters         that fit the data the best 

This lecture: basic parametric models
• Models from the exponential family of distributions

},,,{ 21 dXXX K=X

Θ
},..,,{ 21 nDDDD =
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Basic criteria

What is the best set of parameters? 
• Maximum likelihood (ML)

• Maximum a posteriori probability (MAP)

),|( ξΘDpmaximize

ξ - represents prior (background) knowledge

),|( ξDp Θmaximize

)|(
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ξξξ
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pDpDp ΘΘ

=Θ

Selects the mode of the posterior
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Example. Bernoulli distribution.
Outcomes: two possible values – 0 or 1 (head or tail)
Data: D a sequence of outcomes       with 0,1 values 

Model:  probability of an outcome 1
probability of 0

Objective:
We would like to estimate the probability of seeing 1:

)1()1()|( ii xx
ixP −−= θθθ

θ
)1( θ−

ix

θˆ

Bernoulli distribution
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of 1s seen 2N - number of 0s seen

),|(maxarg ξθθ
θ

DPML =

Likelihood of data:
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Maximum likelihood (ML) estimate.
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Maximum a posteriori estimate

Maximum a posteriori estimate
– Selects the mode of the posterior distribution

How to choose the prior probability?

),|(maxarg ξθθ
θ

DpMAP =
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pDPDp = (via Bayes rule)

),|( ξθDP - is the likelihood of data
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Prior distribution

),|(
)|(
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DP
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ααθξθξθ

Choice of prior: Beta distribution

Beta distribution “fits” binomial sampling - conjugate choices
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Beta distribution
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Bayesian learning

• Both ML or MAP pick one parameter value
– Is it always the best solution?

• Full Bayesian approach
– Remedies the limitation of one choice
– Keeps and uses a complete posterior distribution

• How is it used? Assume we want: 
– Considers all parameter settings and averages the result

– Example: predict the result of the next outcome 
• Choose outcome 1 if                         is higher

θξθξθξ
θ

dDpPDP ),|(),|(),|( ∫ ∆=∆
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Supervised learning

Data:                                     a set of n examples                                 

is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping 
s.t.

Two types of problems:
• Regression: X discrete or continuous

Y is continuous
• Classification: X discrete or continuous

Y is discrete

},..,,{ 21 ndddD =
>=< iii yd ,x

ix
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Supervised learning examples

• Regression:  Y is continuous

Debt/equity
Earnings company stock price
Future product orders

• Classification: Y is discrete

Handwritten digit (array of 0,1s)

Label “3”
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Linear units

Logistic regressionLinear regression
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∑
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Linear regression
• Model

ε++= baxxf )(
- random (normally distributed) noise),0( σε N=
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Logistic regression

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Decision boundary

CS 3750 Advanced Machine Learning

Ridge regression

• For high dimensional inputs the prediction accuracy can be 
often improved by setting some coefficients to zero 

• Error function for the standard least squares estimates: 

• We seek: 

• Ridge regression:

• Where

• What does the new error function do?   
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Ridge regression

• Standard regression:

• Ridge regression:

• penalizes non-zero weights with the cost
proportional to      (a shrinkage coefficient) 

• If an input attribute        has a small effect on improving the error 
function it is “shut down” by the penalty term

• Inclusion of a shrinkage penalty is often referred to as 
regularization
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Modeling complex multivariate distributions

How to model complex multivariate distributions            with large 
number of variables?

One solution:
• Decompose the distribution along conditional independence 

relations.  

Two models:
• Bayesian belief networks (BBNs)
• Markov Random Fields (MRFs)

• Learning. Relies on the decomposition. 

)(ˆ Xp
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables
• Links = direct (causal) dependencies between variables.

CS 3750 Advanced Machine Learning

Bayesian belief network.

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):
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Then its probability is:

Assume the following assignment
of values to random variables
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Markov Random Fields (MRFs)
Undirected acyclic graph

• Nodes = random variables
• Links = direct relations between variables

• BBNs used to model asymetric dependencies (most often 
causal), 

• MRFs model symmetric dependencies (bidirectional effects) 
such as spatial dependences

CS 3750 Advanced Machine Learning

Markov Random Fields (MRFs)
A probability distribution is defined in terms of potential 

functions defined over cliques of the graph

∏
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Tentative topics

• Review of density estimation and classification methods.
• Ridge regression, regularization, prior smoothing.
• Graphical models of multivariate distributions. 

– Directed and undirected models.
– Inference.
– Learning of parameters and structure.

• Variational approximations for inference and learning. 
– Mean-field approximations. Variational Bayes.

• Kernel methods
– Kernel methods, Kernel-PCA, string kernels, etc.  
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Linearly separable classes

There is a hyperplane that separates training instances with no 
error

00 =+ wT xw

Hyperplane:

Class  (+1)

00 >+ wT xw

Class  ( -1)

00 <+ wT xw
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Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances)

• These are called support vectors
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Maximum margin hyperplane

• We want to maximize

• We do it by minimizing

– But we also need to enforce the constraints on points:

w
2

=+ −+ dd

2/2/2 www T=

[ ] 01)( 0 ≥−+ wy T
i xw

0, ww - variables
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Maximum margin hyperplane

• Solution: Incorporate constraints into the optimization
• Optimization problem (Lagrangian)

• Minimize with regard to               (primal variables)
• Maximize with regard to         (dual variables) 
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0≥iα - Lagrange multipliers

Lagrange multipliers enforce the satisfaction of constraints
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Else 0>iα Active constraint

α
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Max margin hyperplane solution
• Set derivatives to 0 (Kuhn-Tucker conditions)

• Now we need to solve for Lagrange parameters (Wolfe dual)

• Quadratic optimization problem: solution        for all i 
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Maximum hyperplane solution

• The resulting parameter vector        can be expressed as:

• The parameter         is obtained through Karush-Kuhn-Tucker 
conditions 

Solution properties
• for all points that are not on the margin
• is a linear combination of support vectors only
• The decision boundary:
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Support vector machines

• The decision boundary:

• The decision:

Note:
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!

)( xx T
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space

Txx ],[ 21=x
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel

• One view: kernels define a distance measure
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