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Administration

Study material
* Handouts, course readings
* Primary textbook:
— Friedman, Hastie, Tibshirani. Elements of statistical
learning. Springer, 2001.
* Other books:
— C. Bishop. Neural networks for pattern recognition. Oxford
U. Press, 1996.
— Duda, Hart, Stork. Pattern classification. 2" edition. J
Wiley and Sons, 2000.
— M. Jordan. Graphical models. unpublished

— B. Scholkopf and A. Smola. Learning with kernels. MIT
Press, 2002.
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Administration

Classes:

— Lectures

— Paper discussions/Paper presentations
No Homeworks and Exams
Projects: 2 projects

— Midterm project (assigned)

— Final project (student writes a proposal)

Grading:
— Projects
— Paper presentations/ discussions
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Tentative topics

Review of density estimation and classification methods.
Ridge regression, regularization, prior smoothing.
Graphical models of multivariate distributions.

— Directed and undirected models.

— Inference.

— Learning of parameters and structure.
Variational approximations for inference and learning.

— Mean-field approximations. Variational Bayes.
Kernel methods

— Kernel methods, Kernel-PCA, string kernels, etc.
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Density estimation

Data: p={(p,D,,..D,}
D, =x, a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X), using examples in D

true distribution n samples estimate

——
pr(X) D=1{D,,D,....D,} P(X)

Standard (iid) assumptions: Samples
* are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ©
r(X[0)

* Example: mean and covariances of multivariate normal

+ Estimation: find parameters @ that fit the data D the best

Non-parametric

* The model of the distribution utilizes all examples in D

» Asifall examples were parameters of the distribution

* Examples: Nearest-neighbor

Semi-parametric
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ®
p(X|©)

* Example: mean and covariances of multivariate normal

+ Estimation: find parameters @ that fit the data D the best

Non-parametric

* The model of the distribution utilizes all examples in D

» Asif all examples were parameters of the disrtibution

+ Examples: Nearest-neighbor

Semi-parametric
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Parametric density estimation

In this lecture we consider parametric density estimation
Basic settings:
» A set of random variables X={X,,X,,....,X,}
* A model of the distribution over variables in X
with parameters ®
e Data D={D,D,,.,D,}

Objective: find parameters © that fit the data the best

This lecture: basic parametric models
* Models from the exponential family of distributions
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Basic criteria

What is the best set of parameters?
* Maximum likelihood (ML)
maximize p(D|0,<&)
& - represents prior (background) knowledge
* Maximum a posteriori probability (MAP)
maximize p(©|D,¢)

Selects the mode of the posterior

p(D]0,5)p(@]<)
p(Ds)

p(®|D,&)=
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Example. Bernoulli distribution.

Outcomes: two possible values — 0 or 1 (head or tail)
Data: D asequence of outcomes x; with 0,1 values

Model: probability of an outcome 1 8
probability of 0 1-6)

P(x;|10)=0"(1- )" Bernoulli distribution

Objective:
We would like to estimate the probability of seeing 1: &
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Maximum likelihood (ML) estimate.

Likelihood of data: n
P(D|0,&)=]]0"(1-6)""
i=1

Maximum likelihood estimate
0,, =argmax P(D|0,¢&)
14
Optimize log-likelihood
[(D,0)=1og P(D|0,&)=log[ [ 6" (1-6)" =

n i=l 5 n
D x,logf+(1—x,)logl—6) =logf>_x, +log1-6)> (1-x,)
i=l i=1

i=1

N, - number of 1s seen N, - number of Os seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0)= N, logf+N,log(1-6)
Set derivative to zero
ol(D,0) _ﬁ_L_
06 0 (1-6)

Solving 0=

ML Solution: 0,, = N _ N
N
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Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

O,p = arg ;naxp(@ | D,$)

0 (o
p@|D,&)= HD |P (’I;E)Ig ) (via Bayes rule)

P(D|6,&) -is the likelihood of data

P(D16,&)=[]0"(1-0)""" =0" (1-0)"
i=1

p(@|&) - is the prior probability on &
How to choose the prior probability?
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Prior distribution
Choice of prior: Beta distribution

_ T +a,) o -l
P(9|§)—Befa(9|ala%)——r(al)r(%)e (1-0)
Why?

Beta distribution “fits” binomial sampling - conjugate choices

P(D|6,&)=0"(1-0)"

010,62 eflz(BDrlg |.2,)

=Beta(0|a,+ N,,a,+ N,)

o, +N, -1
o, +o,+N +N,-2

MAP Solution: O,p =
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Beta distribution

35

: :

— 0=0.5, p=0.5

— =25, =25
0=2.5, p=5
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Bayesian learning

* Both ML or MAP pick one parameter value
— Is it always the best solution?
* Full Bayesian approach
— Remedies the limitation of one choice
— Keeps and uses a complete posterior distribution
« How is it used? Assume we want: P(A | D,¢&)
— Considers all parameter settings and averages the result

P(A|D,&)=[P(A]6,£)p(6| D,&)d6

— Example: predict the result of the next outcome
* Choose outcome 1 if P(x=1|D,&) is higher
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Supervised learning

Data: D={d,,d,,...d,} asetofnexamples
d; =<X,y,>

X, is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping f : X =Y
st. ¥, = f(x;) foralli=1,.,n
Two types of problems:
* Regression: X discrete or continuous —»
Y is continuous
* Classification: X discrete or continuous —
Y is discrete
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Supervised learning examples

Regression: Y is continuous

Debt/equity
Earnings . company stock price
Future product orders

Classification: Y is discrete

# R
W
##

#H#::“ Label “3”

# ##
# ¥ W
fds i b s

Handwritten digit (array of 0,1s)
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Linear units

Linear regression Logistic regression
f(x)=w'x S®)=p(y=1|x,w)=g(W'x)
1
M
2
X L S
W,
X
: w, . w,
X, X,

On-line gradient update:

w«—w+a(y—f(x)x
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Linear regression

* Model
f(x)=ax+b+¢
£=N(0,0) -random (normally distributed) noise
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Logistic regression

Decision boundary
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Ridge regression

For high dimensional inputs the prediction accuracy can be
often improved by setting some coefficients to zero

Error function for the standard least squares estimates:
1

J,(W)=— Z v, - WTX,‘)Z
n

i=1,.n

. !
Weseek: W' =argmin — > (y,-w'x,)’

i=1,.n
Ridge regression:

1
Ju(w)=— 3 (= wix) + 2w

i=l,.n
Where 5 d
||w|| = Z w! and A>0

i=0 .
What does the new error function do?
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Ridge regression

« Standard regression:
1,00 = Y (5w X))
i=l,.n
* Ridge regression:
1 2
J,(w)= ; Z v - WTXi)2 + l”W”

i=1,.n

d
2 . . .
. ||w || = E w]  penalizes non-zero weights with the cost
= proportional to A (a shrinkage coefficient)

* Ifan input attribute x, has a small effect on improving the error
function it is “shut down” by the penalty term

* Inclusion of a shrinkage penalty is often referred to as
regularization
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Modeling complex multivariate distributions

How to model complex multivariate distributions p(X) with large
number of variables?

One solution:
* Decompose the distribution along conditional independence
relations.

Two models:
* Bayesian belief networks (BBNs)
* Markov Random Fields (MRFs)

* Learning. Relies on the decomposition.
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Bayesian belief network.

1. Directed acyclic graph

Nodes = random variables
Links = direct (causal) dependencies between variables.

'

@ P(A|B,E)

P(J|A) P(MIA)

Gomcat) — (Marycaiy
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Bayesian belief network.

2. Local conditional distributions

relate variables and their parents

-

@ P(A|B,E)

P(JIA) P(MIA)

Gomcans)  (Marycans
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Bayesian belief network.

P(B) P(E)
F

T F T
Burglary )| 0.001 0.999 Earthquake ) [0.002 0.998

P(A[B,E)
B E| T F
T T | 095 0.05
T F | 0.94 0.06
F T |0.29 0.71
F F | 0.0010.999

P(IA)

\ P(M|A)
Al T F Al T F
T | 0.90 0.1
F | 0.05 0.95

-
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional
distributions (obtained via the chain rule):

P(X,,X,,..X,)= HP(X,' | pa(X,))

i=l,.n

OB E
Example: \ f
Assume the following assignment A
of values to random variables (5/ E
B=T,E=T,A=T,J=T,M=F J M

Then its probability is:
PB=T,E=T,A=T,J=T,M=F)=

AB=T)RE=T)AA=T| B=T,E=T)RJ=T| A=D)AM=F| A=T)
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Markov Random Fields (MRFs)

Undirected acyclic graph
* Nodes = random variables
* Links = direct relations between variables

*  BBNs used to model asymetric dependencies (most often
causal),

* MRFs model symmetric dependencies (bidirectional effects)
such as spatial dependences
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Markov Random Fields (MRFs)

A probability distribution is defined in terms of potential
functions defined over cliques of the graph

P(X, X, X,) == [](C)

C;ecliques(G)

CS 3750 Advanced Machine Learning




Tentative topics

* Review of density estimation and classification methods.
* Ridge regression, regularization, prior smoothing.
* Graphical models of multivariate distributions.
— Directed and undirected models.
— Inference.
— Learning of parameters and structure.
* Variational approximations for inference and learning.
— Mean-field approximations. Variational Bayes.
* Kernel methods
— Kernel methods, Kernel-PCA, string kernels, etc.

CS 3750 Advanced Machine Learning

Linearly separable classes

There is a hyperplane that separates training instances with no
error

Hyperplane:
wix+w,=0
)
Class (+1) " o
[ )
wix+w,>0 u
[
Class (-1)
wix+w, <0
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Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

» These are called support vectors
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Maximum margin hyperplane

2
* We want to maximize d, +d_=—

[wl
* We do it by minimizing
||w||2 /2=w'w/2
w,w, - variables
— But we also need to enforce the constraints on points:

[y, (v x+w) -1]2 0
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Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization

* Optimization problem (Lagrangian)

J(W,w,,a) = ||w||2 /2 - Zn: ai[yi(wa +w,) —1]
i=1
a, 20 -Lagrange multipliers

* Minimize with regard to w,w, (primal variables)
* Maximize with regard to a  (dual variables)

Lagrange multipliers enforce the satisfaction of constraints

If [yl.(waJr wo)—1]> 0 = a,—>0
Else = a,>0  Active constraint
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Max margin hyperplane solution

 Set derivatives to 0 (Kuhn-Tucker conditions)
Vi J(W,w,a)=w— z a,y.X;, = 0

i=1

oJ(w,w,,a) -
_—_— a. .=0
o, Z:, e

* Now we need to solve for Lagrange parameters (Wolfe dual)

n 1 n . .
J(a) = Zai _Ezalajyiyj(xirxj) <4=m maximize
i=1

i,j=1

Subject to constraints
a, >0 for all i, and Z a,y; =0
i=1

* Quadratic optimization problem: solution ¢, for all i
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Maximum hyperplane solution

* The resulting parameter vector w can be expressed as:

W=D dyx, @, is the solution of the dual problem
i=1

* The parameter w, is obtained through Karush-Kuhn-Tucker
conditions

a.[y,(Wx, +w,)—1]=0

Solution properties

* ¢,=0 forall points that are not on the margin

« W isalinear combination of support vectors only
* The decision boundary:

Wix+w, =D @,y (x, x)+w, =0
ieSV
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Support vector machines

* The decision boundary:
A ~ T
wix+ w, = Z a,y.(x; x)+w,
ieSV
* The decision:

JAj = sign {Z diyi(xiTX) + WO}
ieSV
Note:

* Decision on a new x requires to compute the inner product
between the examples (X x)

* Similarly, optimization depends on (x [Tx)
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Nonlinear case

. . T
The linear case requires to compute (X, X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = ¢(x)
It is possible to use SVM formalism on feature vectors

o(x)" o(x')
Kernel function

K(x,x")=9(x) ¢(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!
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Kernel function example

Assume x =[x,,x,]" and a feature mapping that maps the input
into a quadratic feature set

x = ox)=[x],x3, \/Exlxz, \/Exl, \/Exz 177
Kernel function for the feature space:
K(x',x)=9(x") @(x)
= x]x T+ xS +2x, 0%, X, +2x,x" +2x,x', +1
= (x,x"|+x,x',+1)°
= (1+ (x"x")’
The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Kernel function example

Linear separator

|
. in the feature space
|
Non-linear separator
in the input space
|
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Kernel functions

Linear kernel

K(x,x")=x"x'

Polynomial kernel

K(x,x") = [1 + XTX'] g

Radial basis kernel

K(x,x") =exp {— %”x - x'||2}

One view: kernels define a distance measure
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