
140 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Turbo Decoding as an Instance of
Pearl’s “Belief Propagation” Algorithm

Robert J. McEliece,Fellow, IEEE, David J. C. MacKay, and Jung-Fu Cheng

Abstract—In this paper, we will describe the close connection
between the now celebrated iterative turbo decoding algorithm
of Berrou et al. and an algorithm that has been well known
in the artificial intelligence community for a decade, but which
is relatively unknown to information theorists: Pearl’s belief
propagationalgorithm. We shall see that if Pearl’s algorithm is
applied to the “belief network” of a parallel concatenation of
two or more codes, the turbo decoding algorithm immediately
results. Unfortunately, however, this belief diagram has loops,
and Pearl only proved that his algorithm works when there
are no loops, so an explanation of the excellent experimental
performance of turbo decoding is still lacking. However, we shall
also show that Pearl’s algorithm can be used to routinely derive
previously known iterative, but suboptimal, decoding algorithms
for a number of other error-control systems, including Gallager’s
low-density parity-check codes, serially concatenated codes, and
product codes. Thus, belief propagation provides a very attrac-
tive general methodology for devising low-complexity iterative
decoding algorithms for hybrid coded systems.

Index Terms—Belief propagation, error-correcting codes, iter-
ative decoding, Pearl’s Algorithm, probabilistic inference, turbo
codes.

I. INTRODUCTION AND SUMMARY

T URBO codes, which were introduced in 1993 by Berrou
et al. [10], are the most exciting and potentially important

development in coding theory in many years. Many of the
structural properties of turbo codes have now been put on
a firm theoretical footing [7], [18], [20], [21], [27], [45], and
several innovative variations on the turbo theme have appeared
[5], [8], [9], [12], [27], [48].

What is still lacking, however, is a satisfactory theoretical
explanation of why the turbo decoding algorithm performs
as well as it does. While we cannot yet announce a solution
to this problem, we believe that the answer may come from
a close study ofPearl’s belief propagation algorithm, which
is largely unknown to information theorists, but well known
in the artificial intelligence community. (The first mention of
belief propagation in a communications paper, and indeed the

Manuscript received September 27, 1996; revised May 3, 1997. This work
was supported by NSF Grant NCR-9505975, AFOSR Grant 5F49620-97-
1-0313, and a grant from Qualcomm, Inc. A portion of R. J. McEliece’s
contribution was done while he was visiting the Sony Corporation in Tokyo.
The collaboration between D. J. C. MacKay and R. J. McEliece was begun at,
and partially supported by, the Newton Institute for Mathematical Sciences,
Cambridge, U.K.

R. J. McEliece is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA 91125 USA.

D. J. C. MacKay is with the Cavendish Laboratory, Department of Physics,
Darwin College, Cambridge University, Cambridge CB3 OHE U.K.

J.-F. Cheng is with Salomon Brothers Inc., New York, NY 10048 USA.
Publisher Item Identifier S 0733-8716(98)00170-X.

paper that motivated this one, is that of MacKay and Neal
[37]. See also [38] and [39].)

In this paper, we will review the turbo decoding algorithm
as originally expounded by Berrouet al. [10], but which
was perhaps explained more lucidly in [3], [18], or [50].
We will then describe Pearl’s algorithm, first in its natural
“AI” setting, and then show that if it is applied to the “belief
network” of a turbo code, the turbo decoding algorithm im-
mediately results. Unfortunately, however, this belief network
has loops, and Pearl’s algorithm only gives exact answers
when there are no loops, so the existing body of knowledge
about Pearl’s algorithm does not solve the central problem
of turbo decoding. Still, it is interesting and suggestive that
Pearl’s algorithm yields the turbo decoding algorithm so easily.
Furthermore, we shall show that Pearl’s algorithm can also be
used to derive effective iterative decoding algorithms for a
number of other error-control systems, including Gallager’s
low-density parity-check codes, the recently introduced low-
density generator matrix codes, serially concatenated codes,
and product codes. Some of these “BP” decoding algorithms
agree with the ones previously derived by ad hoc methods,
and some are new, but all prove to be remarkably effective. In
short, belief propagation provides an attractive general method
for devising low-complexity iterative decoding algorithms for
hybrid coded systems. This is the message of the paper. (A
similar message is given in the paper by Kschischang and
Frey [33] in this issue.)

Here is an outline of the paper. In Section II, we derive
some simple but important results about, and introduce some
compact notation for, “optimal symbol decision” decoding
algorithms. In Section III, we define what we mean by a
turbo code, and review the turbo decoding algorithm. Our
definitions are deliberately more general than what has previ-
ously appeared in the literature. In particular, our transmitted
information is not binary, but rather comes from a-ary
alphabet, which means that we must deal with-ary probability
distributions instead of the traditional “log-likelihood ratios.”
Furthermore, the reader may be surprised to find no discussion
of “interleavers,” which are an essential component of all
turbo-coding systems. This is because, as we will articulate
fully in our concluding remarks, we believe that the inter-
leaver’s contribution is to make the turbo code a “good” code,
but it has nothing directly to do with the fact that the turbo
decoding algorithm is a good approximation to an optimal
decoder. In Section IV, we change gears, and give a tutorial
overview of the general probabilistic inference problem, with
special reference toBayesian belief networks. In Section V,

0733–8716/98$10.00 1998 IEEE

MCELIECE et al.: TURBO DECODING AS PEARL’S ALGORITHM 141

Fig. 1. CodewordXXX = (UUU;XXX1) is transmitted over a memoryless channel
and received asYYY = (YYY s; YYY 1):

we describe Pearl’s BP algorithm, which can be defined on
any belief network, and which gives an exact solution to the
probabilistic inference problem when the belief network has
no loops. In Section VI, we show that the turbo decoding
algorithm follows from a routine application of Pearl’s algo-
rithm to the appropriate (loopy) belief network. In Section VII,
we briefly sketch some other decoding algorithms that can be
derived from BP considerations. Finally, in Section VIII, we
summarize our findings and venture some conclusions.

II. PRELIMINARIES

In this section, we will describe a general class of-ary
systematic encoders, and derive the optimalsymbol-by-symbol
decoding rule for a memoryless channel.

Let be a -dimensional random vector of
independent, but not necessarily equiprobable, symbols from
a -letter alphabet with for
The vector represents information to be transmitted reliably
over an unreliable channel. We suppose thatis encoded
systematically, i.e., mapped into a codeword of the form

(2.1)

where is the “systematic” part and is the “nonsystem-
atic” part of the codeword In the rest of the paper, we will
sometimes call a codeword fragment.

We assume that the codeword is transmitted over a
noisy channel with transition probabilities

and received as where is
the portion of corresponding to the systematic part of the
codeword and is the portion corresponding to the
codeword fragment We assume further that the channel is
memoryless, which implies that the conditional density factors
according to the rule

(2.2)

(2.3)

where denotes theth component of The situation is
depicted in Fig. 1.

Thedecoding problemis to “infer” the values of the hidden
variables based on the “evidence,” viz. the observed values

and of the variables and The optimal decision,
i.e., the one that minimizes the probability of inferring an
incorrect value for is the one based on the conditional prob-
ability, or “belief,” that the information symbol in question
has a given value

(2.4)

(A communication theorist would use the term “a poste-
riori probability,” rather than “belief.”) If is such that

for all the decoder infers that
The following straightforward computation is central

to our results. In this computation, and for the rest of the paper,
we will use Pearl’s notation [44].

Definition 2.1: If and
are vectors of nonnegative real numbers, the notation

means that for In
other words, is a probability vector whose components are
proportional to those of (If and are nonnegative
real-valued functions defined on a finite set, the notation

is defined similarly.)
Lemma 2.2: If the likelihood 1 is denoted by

then the belief defined in (2.4) is given by

(2.5)

Proof: We have, by the definition (2.4),
Then

using the notation

by

by

The last two lines of the above calculation are the assertions
of the lemma.

We see from (2.5) that is the product of three
terms. The first term, might be called thesystematic
evidenceterm. The second term, takes into account thea
priori distribution of Note that the effect of the systematic
evidence is, in effect, to change the prior distribution of
from to The third term, which is more

1If the encoder is not systematic, i.e., if the uncoded information symbols
Ui are not transmitted, these likelihoods should all be set equal to one.

142 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

TABLE I
UPDATE RULES FOR PEARL’S ALGORITHM (HERE, hvvvi = v1v2 � � � vn; IF vvv = (v1; � � � ; vn)

IS A VECTOR OF REAL NUMBERS)

complicated, takes into account the geometry of the code.
Following [10], we will call this term theextrinsic term, and
denote it by The extrinsic term is so important to what
follows that we shall introduce a special notation for it. (This
notation will also prove useful in Section V, where we shall
use it to describe Pearl’s algorithm—see Table I, line 6.)

Thus, let be finite alphabets, let
and let denote the set of real numbers. Let

be a function mapping into In
other words, is a vector of real-valued functions, and if

then

Now, suppose that is a real-valued function defined on
the set which we call akernel. The transform of is
the vector where is defined by

(2.6)

We summarize (2.6) by writing

(2.7)

Next, if and are vector-valued functions as above, we de-
fine theiradjacent product as a simple componentwise
product, i.e., where

(2.8)

Using the circle and adjacent notation,2 we can express the
result of Lemma 2.2 compactly. To do so, we take
and define a kernel as

2We assume that “adjacent” takes precedence over “circle” in order to
minimize the use of parentheses.

where the codeword fragment is a deterministic
function of Then Lemma 2.2 can be summarized as follows:

(2.9)

where and

III. SYSTEMATIC PARALLEL CONCATENATED

(TURBO) CODES

In this section, we will define what we mean by a turbo code,
and present a general version of the turbo decoding algorithm.

With the same setup as in Section II, suppose we have two
systematic encodings of

One way to combine and into a single code is via the
mapping

which is called theparallel concatenationof and or the
turbo codeformed by combining and

Once again, we assume that the codewordis transmitted
through a noisy channel with transition probabilities It
is received as where is the component
of corresponding to is the component of corre-
sponding to and is the component of corresponding
to We assume again that the channel is memoryless, which
implies that the conditional density factors according to the
rule

(3.1)

(3.2)

The situation is as depicted in Fig. 2.

MCELIECE et al.: TURBO DECODING AS PEARL’S ALGORITHM 143

Fig. 2. Generic “turbo code.” The codewordXXX = (UUU;XXX1;XXX2) is trans-
mitted over a memoryless channel and received asYYY = (YYY s; YYY 1; YYY 1):

By Lemma 2.2, the optimal decisions for the turbo code are
based on the beliefs

(3.3)

For simplicity, and in accordance with engineering practice,
from now on we will assume that thea priori probability
density of the ’s is uniform, i.e., With
this assumption, using the notation introduced in Section II,
(3.3) becomes3

(3.4)

where the kernels and are defined by

(3.5)

The celebrated “turbo decoding algorithm” [10], [50], [3]
is an iterative approximation to the optimal beliefs in (3.3)
or (3.4), whose performance, while demonstrably suboptimal
[41], has nevertheless proved to be “nearly optimal” in an im-
pressive array of experiments. The heart of the turbo algorithm
is an iteratively defined sequence of product probability
densities on defined by

(3.6)

i.e., is a list of uniform densities on and for

if is odd
if is even.

(3.7)

Then the th turbo belief vectoris defined by

(3.8)

The general form of (3.7) is shown in Fig. 3.
In a “practical” decoder, the decision about the information

bits is usually made after a fixed number of iterations. (The
hope that the limit of (3.8) will exist is, in general, a vain
one since, in [41], several examples of nonconvergence are

3As we observed earlier, the effect of��� is to change the prior distribution
from ��� to ������: It follows that if there is a nonuniform prior���; it can be
accounted for by replacing every occurrence of “���” in our formulas with������:

Fig. 3. Block diagram of turbo decoding procedure.

given.) If the decision is made after iterations, the th
turbo decisionis defined as

(3.9)

We conclude this section by observing that, as we have
stated it, the turbo algorithm [(3.7) and (3.9)] does not appear
to be significantly simpler than the optimal algorithm (3.4)
since (for example) is not, in general, much easier
to compute than The following theorem, and the
discussion that follows, shed light on this problem.

Theorem 3.1:If the components of are assumed to be
independent, with for

then

if is odd

if is even (3.10)

Proof: We consider the case odd, the proof for even
being essentially the same. By reasoning similar to that in

Lemma 2.2, we find that

(3.11)

If we divide both sides of (3.11) by we obtain

(3.12)

Since by (3.7), the theorem follows.

The significance of Theorem 3.1 is that it tells us that the
appropriate components of the vectors can be computed
by a decoder for (or which is capable of computing the
probabilities based on an observation
of the noisy codeword i.e., an optimal “soft”
symbol decision decoder. Theth component of the message
passed to the second decoder module is then

(3.13)

which is the “extrinsic information” referred to earlier.

144 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

One of the keys to the success of turbo codes is to use com-
ponent codes and for which alow-complexitysoft bit de-
cision algorithm exists. For example, the BCJR or “APP” de-
coding algorithm [4] provides such an algorithm for any code,
block or convolutional, that can be represented by a trellis.4

As far as is known, a code with a low-complexity optimal
decoding algorithm cannot achieve high performance, which
means that individually, the codes and must be relatively
weak. The brilliant innovation of Berrouet al. [10] was
to devise a code of the type shown in Fig. 2, in which
the individual codes and are indeed relatively weak
(but have a low-complexity decoding algorithm), in such a
way that that the overall code is very powerful. Roughly
speaking, they accomplished this by making the encoder
identical to except for a random permutation (accom-
plished by the “interleaver”) of the inputs. (The encoders were
short-constraint-length systematic convolutional encoders with
feedback.) However, since it is the object of this paper to
study the decoding algorithm without regard to the resulting
performance, we shall not discuss the constructive aspect of
turbo codes further.

IV. BACKGROUND ON PROBABILISTIC INFERENCE, BAYESIAN

BELIEF NETWORKS, AND PEARL’S ALGORITHM

In this section, we will give a tutorial overview of the
so-calledprobabilistic inference problemof the artificial in-
telligence community, as well as a brief discussion of Pearl’s
algorithm, which solves the probabilistic inference problem in
many important special cases.

Thus, let 5 be a set of discrete
random variables, where assumes values in the finite
alphabet The joint density function

is then a mapping from into the set of real

numbers We assume that the marginal densities
are also known. The marginal density func-

tion represents oura priori “belief” about the random
variable Now, suppose that one or more of these random
variables is measured or “observed.” This means that there is
a subset (the evidence set) such that, for all

the random variable is known to have a particular
value, say The evidenceis then defined to be the event

The fundamentalprobabilistic inference problemis to com-
pute theupdated beliefs, i.e., thea posteriori or conditional
probabilities for all

The brute force approach to computing is to sum
over all of the terms of which do not involve either

4As we shall see in Section IV, the BCJR algorithm itself, and the many
variations of it, are themselves special cases of Pearl’s algorithm. In this
application, the algorithm is provably exact since the corresponding “belief”
diagram has no loops.

5We have already used upper caseX ’s to denote codeword components,
for example, (2.1). We use upper caseX ’s here to denote arbitrary random
variables, and hope no confusion will occur.

Fig. 4. Simple example of a DAG which represents a five-variable directed
Markov field [see (4.4)]. This DAG is “loopy,” with the verticesv1; v3; v4;
and v5 forming a loop.

or To simplify notation, we assume and
Then we have

(4.1)

If can assume different values, then computing the
sum in (4.1) for each possible value ofrequires
additions, which is impractical unless and the ’s are very
small numbers.

The idea behind the “Bayesian belief network” approach
[28], [51] to this inference problem is to exploit any “partial
independencies” which may exist among the’s to simplify
belief updating. The simplest case of this is when the random
variables are mutually independent, in which
case the work in (4.1) can be avoided altogether since an
observation of one such variable cannot affect our belief in
another. More generally, the partial independencies can be
described by adirected acyclic graph, or DAG.

A DAG is a finite, directed graph, in which there are no
directed cycles. For example, Fig. 4 shows a DAG with five
vertices and five edges. Let us agree that if there is a directed
edge then will be called a “parent” of and will
be called a “child” of If the set of parents of a vertex is
denoted by then we can describe the graph of Fig. 4
as follows:

(4.2)

If is a DAG, and if is a set of random variables in
one-to-one correspondence with the vertices ofthe joint
density function is said tofactor according to if

(4.3)

where denotes a value assignment for the parents of
For example, a five-variable density function

MCELIECE et al.: TURBO DECODING AS PEARL’S ALGORITHM 145

Fig. 5. Bayesian network interpretation of the decoding problem.

factors according to the graph of Fig. 4 if

(4.4)

A set of random variables whose density functions factor
according to a given DAG is called adirected Markov field
[35], [32], [65]. For example, if is a directed chain, then

is an ordinary Markov chain. A DAG, together with the
associated random variables is called aBayesian belief
network, or Bayesian networkfor short [28].

At this point, we observe that the general coding framework
of Fig. 1 can be represented as the Bayesian network shown
in Fig. 5. From the decoder’s viewpoint, the observed noisy
information bits are probabilistic functions of the hidden
information bits Similarly, the observed noisy codeword
fragment is a probabilistic function of the codeword

which in turn is a deterministic function of the hidden
input bits. (Fig. 5 implies that the information bits are
independent.) The decoder’s problem is thus to infer the values
of the hidden variables based on the evidence variables

and
Bayesian networks can sometimes lead to considerable

simplifications of the probabilistic inference problem. The
most important of these simplifications, for our purposes, is
Pearl’sbelief propagationalgorithm. In the 1980’s, Kim and
Pearl [31], [42]–[44] showed that if the DAG is a “tree,”
i.e., if there are no loops,6 then there are efficient distributed
algorithms for solving the inference problem. If all of the
alphabets have the same size Pearl’s algorithm solves the
inference problem on trees with computations, where

is the maximum number of parents of any vertex, rather than
where is the number of unknown random variables,

which is required by the brute-force method. The efficiency
of belief propagation on trees stands in sharp contrast to
the situation for general DAG’s since, in 1990, Cooper [16]
showed that the inference problem in general DAG’s is NP
hard. (See also [17] and [53] for more on the NP hardness of
probabilistic inference in Bayesian networks.)

Since the network in Fig. 5 is a tree, Pearl’s algorithm will
apply. However, the result is uninteresting: Pearl’s algorithm
applied to this Bayesian network merely gives an alternative
derivation of Lemma 2.2.

6A “loop” is a cycle in the underlying undirected graph. For example, in
the DAG of Fig. 4,v1 ! v4 ! v5 ! v3 ! v1 is a loop.

Fig. 6. Bayesian network for the “hidden Markov chain” problem. Here,
X1; � � � ; XN

form a Markov chain, andY1; � � � ; YN are noisy versions of
X1; � � � ; XN

: The problem is to compute the conditional probabilities of the
hidden variablesXi based in the “evidence” variablesYi:

A more profitable application of Pearl’s algorithm is to
the classic “hidden Markov chain” inference problem, where
the appropriate Bayesian network is shown in Fig. 6. Here,
the result is a linear-time exact solution which is function-
ally identical to the celebrated “forward–backward algorithm”
discovered in the 1960’s and 1970’s.7

For us, the important feature of Pearl’s BP algorithm is that
it can be defined for an arbitrary DAG which is not necessarily
a tree, even though there is no guarantee that the algorithm will
perform a useful calculation if there are loops in the DAG.
We believe that the key to the success of turbo codes, and a
potentially important research area for the AI community, is
the experimentally observed fact that Pearl’s algorithm works
“approximately” for some loopy, i.e., nontree DAG’s.8 We
shall explain the connection between turbo codes and BP in
Section VI, after first describing the BP algorithm in detail in
Section V. For now, as a preview of coming attractions, we
present Fig. 7, which is a loopy Bayesian network appropriate
for the turbo decoding problem.9

V. DETAILED DESCRIPTION OFPEARL’S ALGORITHM

In this section, we will give a detailed functional description
of Pearl’s algorithm as described in [44, Ch. 4].

7The forward–backward algorithm has a long and convoluted history that
merits the attention of a science historian. It seems to have first appeared
in the unclassified literature in two independent 1966 publications [6], [11].
Soon afterwards, it appeared in papers on MAP detection of digital sequences
in the presence of intersymbol interference [23]. It appeared explicitly as an
algorithm for tracking the states of a Markov chain in the early 1970’s [40],
[4] (see also the survey papers [47] and [49]). A similar algorithm (in “min-
sum” form) appeared in a 1971 paper on equalization [62]. The algorithm
was connected to the optimization literature in 1987 [63]. All of this activity
appears to have been completely independent of the developments in AI that
led to Pearl’s algorithm!

8There is an “exact” inference algorithm for an arbitrary DAG, developed
by Lauritzen and Spiegelhalter [34], which solves the inference problem with
O(NcqJ) computations, whereNc is the number of cliques in the undirected
triangulated “moralized” graphGm which can be derived fromG; andJ is
the maximum number of vertices in any clique inGm: However, this proves
not to be helpful in the turbo decoding problem since the appropriate DAG
produces moralized graphs with huge cliques. For example, the turbo codes
in [10] have an associatedGm with a clique of size 16 384.

9Our Fig. 7 should be compared to Wiberg [67, Fig. 2.5], which describes
the “Tanner graph” of a turbo code. The figures are similar, but there is
a key difference. Wiberg incorporates the turbo code’s interleaver, citing it
(the interleaver) as necessary for ensuring that there are no short cycles in
the graph. In our Fig. 7, on the other hand, there are many short cycles. It
is our belief the presence of short cycles does not, at least in many cases,
compromise the performance of the decoding algorithm, although it may
degrade the quality of the code. We will expand on these remarks at the
conclusion of the paper.

146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Fig. 7. Bayesian network interpretation of the turbo decoding problem. Note
the presence of many loops, i.e.,U1 ! XXX2 ! U2 ! XXX1 ! U1:

Pearl’s belief propagation algorithm is a decentralized
“message-passing” algorithm, in which there is a processor
associated with each vertex of Each processor can
communicate only with its parents and children. Furthermore,
the processor associated with a variable is assumed to

“know” the conditional density function
where are the

parents of (If has no parents, this knowledge is assumed

to be the marginal density function .)
Thus, the “local environment” of a node is as shown in
Fig. 8(a).

When a processor is activated, it “reads” the messages
received from each of its parents and children, updates its
belief based on these messages, and then sends new messages
back to its parents and children.

The message a node receives from its parent denoted
is in the form of a list of probabilities (“” for

“probability”), one for each value Informally,
is the probability of the event conditioned

on the evidence in the tree already “known” to Similarly,
the message receives from its child denoted is
in the form of a list of nonnegative real numbers (likelihoods:
“ ” for “likelihood”), one for each value of
Informally, is the probability of the evidence
“knows,” conditioned on the event For simplicity,
we adopt a vector notation for these incoming messages

(5.1)

The situation is summarized in Fig. 8(b).
After has been activated, the message thatpasses to its

child denoted is a list of probabilities, one for
each value of Roughly speaking, is the probability
of the event given the evidence in the tree already
“known” to which now includes any new evidence which
may have been contained in the incoming messages. Similarly,
the message that passes to its parent denoted
is the probability of the evidence it now knows about, given

(a)

(b)

(c)

Fig. 8. Summary of Pearl’s algorithm. (Boldface symbols denote random
vectors; ordinary symbols represent random variables.)

the event Again, we adopt a vector notation

(5.2)

This situation is summarized in Fig. 8(c).
Additionally, each node of the graph keeps track of a

number of other quantities

MCELIECE et al.: TURBO DECODING AS PEARL’S ALGORITHM 147

TABLE II
INITIALIZATION RULES FOR PEARL’S ALGORITHM

The quantities and have no
particular intrinsic significance, but the quantity is
the heart of the algorithm since, when the algorithm termi-
nates, gives the value of the desired conditional
probability

Here, then, is a complete description of Pearl’s
algorithm. When the node is activated, it “reads” its
incoming messages and and updates

and
in that order, using the update rules in Table I and

the initial values given in Table II. (In Table I, we use the
notation if is a vector
of real numbers.) A node can be activated only if all of
its incoming messages exist. Otherwise, the order of node
activation is arbitrary. Pearl proved that if the DAG is a
tree, then after a number of iterations at most equal to the
diameter of the tree, each node will have correctly computed
its “belief,” i.e., the probability of the associated random
variable, conditioned on all of the evidence in the tree, and
no further changes in the beliefs will occur. If the network is
not a tree, the algorithm has no definite termination point, but
in practice, the termination rule chosen is either to stop after
a predetermined number of iterations, or else to stop when
the computed beliefs cease to change significantly.

VI. TURBO DECODING AS AN INSTANCE OF BP

In this section, we will show formally that if Pearl’s BP
algorithm is applied to the belief network of Fig. 7, the result
is an algorithm which is identical to the “turbo decoding”
algorithm described in Section III. More precisely, we will
show that if the network of Fig. 7 is initialized using the rules
of Table II, and if the nodes are updated (using Table I) in
the order the results are summarized
in Table III. In particular, the sequence of “beliefs” in the

TABLE III
PEARL’S ALGORITHM APPLIED TO THE BELIEF NETWORK OF FIG. 7

(NODES ARE ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN)

information symbols will be

in agreement with (3.8).
Let us now verify the entries in Table III. First, we discuss

the necessary initializations. Becauseis a source node (i.e.,
it has no parents), and since we are assuming that the prior
distribution on the ’s is independent and uniform, by line 3
in Table II, the quantity is permanently set as follows:

permanent (6.1)

Since the ’s are “direct evidence” nodes (i.e., evidence
nodes which have only one parent), by line 6 of Table II, the
message that sends the is permanently set as follows:

permanent (6.2)

Since the nodes and are not evidence nodes, by line
6 of Table II, the messages that they send to the’s are

148 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

initially set as follows:

temporary (6.3)

which appears (in vector notation) in line 1 of Table III.
Now, we simultaneously activate the nodes

Since is a source node, it is not necessary to evaluate
or the messages. By line 2 of Table I

(6.4)

by (6.2) and (6.3)

(6.5)

Similarly, by line 5 of Table I

(6.6)

by (6.1) and (6.5)

(6.7)

In vector notation, (6.7) is equivalent to

which appears in line 2 of Table III.
The message sends to is, according to line 7, Table I

(6.8)

by (6.1), (6.2), (6.3)

(6.9)

for In vector notation, (6.9) becomes

(6.10)

which also appears in line 2 of Table III. A similar calculation
gives which again appears in line 2 of Table III.

Next, we update The quantities
and are not required since we do not update the
evidence node Since is an evidence node, by line
6, Table II, the message is permanently fixed as

Thus, by line 2, Table I, is also fixed

permanent (6.11)

Next, we compute using line 4 of Table I:

Since is a deterministic function of if follows that
is equal to 1 for that value of that produces the

code fragment i.e.,

permanent (6.12)

where in 6.12 we have used the definition (3.5). Finally, we
update the messages using line 6 of Table I

by (6.10) and (6.12)

by (3.6)

by (3.7) (6.13)

which appears in line 3 of Table III.
Now, we update again, using the definition (6.4), and the

previous values given in (6.2), (6.13), and (6.3)

(6.14)

TABLE IV
PEARL’S ALGORITHM APPLIED IN A SLIGHTLY DIFFERENT

WAY TO THE BELIEF NETWORK OF FIG. 7 (NODES ARE

ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN)

Similarly, using the definition (6.6), and the previous values
in (6.4) and (6.1)

which, in vector notation, is

in agreement with line 4 of Table III.
Next, we update and

by (6.8)

by (6.1), (6.2), (6.3)

(6.15)

and

like (6.8)

by (6.1), (6.2), (6.4)

(6.16)

The values (6.15) and (6.16) are the ones given in line 4 of
Table III. It is now a matter of routine to verify that the rest
of the values given in Table III are correct.

The order in which we chose to update the nodes in
Fig. 7 was arbitrary, and other orders give different algo-
rithms. For example, it is easy to verify that the update
order yields the results in Table IV, where
the sequences and are defined by

and

if is odd
if is even

(6.17)

if is even
if is odd.

(6.18)

It would be interesting to experiment with this alternative ver-
sion of the turbo decoding algorithm. (This “parallel update”
rule is, in fact, the rule used to derived the decoding algorithm
for multiple turbo codes, as discussed in Section VII.)

MCELIECE et al.: TURBO DECODING AS PEARL’S ALGORITHM 149

Fig. 9. Belief network appropriate for decoding a “multiple” turbo code, in
which there areM code fragments.

VII. OTHER DECODING ALGORITHMS

DERIVED FROM BELIEF PROPAGATION

As we have seen in Sections IV and V, Pearl’s algorithm
can be applied to any belief network, not just to one like Fig. 7.
It is a fruitful exercise to apply Pearl’s algorithm to the belief
networks of a variety of hybrid coding schemes, to see what
results. In this section, we will briefly outline (without proofs)
what we have discovered along these lines.

Multiple Turbo Codes:As we have defined them, turbo
codes involve only two encodings of the information, as
shown in Fig. 2. However, several researchers (e.g., [19]) have
experimented with three or more parallel encodings. If there
are parallel encodings, the appropriate belief network is
as shown in Fig. 9. Applying the BP algorithm to this belief
network, with the update order we obtain a
generalized turbo decoding algorithm which is identical to the
one employed successfully in [19].

Gallager’s Low-Density Parity-Check Codes:The earliest
suboptimal iterative decoding algorithm is that of Gallager,
who devised it as a method of decoding his “low-density
parity-check” codes [25], [26]. This algorithm was later gen-
eralized and elaborated upon by Tanner [61] and Wiberg
[67]. But as MacKay and Neal [37]–[39] have pointed out,
in the first citation of belief propagation by coding theo-
rists, Gallager’s algorithm is a special kind of BP, with
Fig. 10 as the appropriate belief network. [In Fig. 10,

is a codeword which satisfies the parity-check
equations is a noisy version
of The “syndrome” is defined as

which is perpetually “observed” to be].
Although LDPC codes had largely been forgotten by cod-
ing theorists until their rediscovery by MacKay and Neal,
simulations of Gallager’s original decoding algorithm made
with powerful modern computers show that their performance
is remarkably good, in many cases rivaling that of turbo
codes. More recently, Sipser and Spielman [57], [60] have
replaced the “random” parity-check martrices of Gallager and
MacKay–Neal with deterministic parity-check matrices with
desirable properties, based on “expander” graphs, and have
obtained even stronger results.

Low-Density Generator Matrix Codes:Recently, Cheng
and McEliece have experimented with BP decoding on certain

Fig. 10. Belief network for decoding a Gallager “low-density parity-check”
code.

Fig. 11. Belief network for decoding systematic, low-density generator
matrix codes.

systematic linear block codes with low-densitygenerator
matrices[13]. (This same class of codes appeared earlier in
a paper by MacKay [36] in a study of modulo-2 arithmetic
inference problems, and in a paper by by Spielman [60] in
connection with “error reduction.”) The decoding algorithm
devised by Cheng and McEliece was adapted from the one
described in the MacKay–Neal paper cited above, and the
results were quite good, especially at high rates. More recently,
Cheng [14], [15] used some of these same ideas to construct
a class of block codes which yield some remarkably efficient
multilevel coded modulations. Fig. 11 shows the belief net-
work for low-density generator matrix codes used by McEliece
and Cheng.

Serially Concatenated Codes:We have defined a turbo
code to be the parallel concatenation of two or more com-
ponents codes. However, as originally defined by Forney
[22], concatenation is aserial operation. Recently, several
researchers [8], [9] have investigated the performance of
serially concatenated codes, with turbo-style decoding. This
is a nontrivial variation on the original turbo decoding idea,
and the iterative decoding algorithms in [8] and [9] differ so
significantly from the original Berrouet al.algorithm that they
must be considered an original invention. Still, these decoding
algorithms can be derived routinely from a BP viewpoint,
using the network of Fig. 12. Here, is the information to
be encoded, is the outer (first) encoding, is the inner
(second) encoding, and is the noisy version of

Product Codes:A number of researchers have been
successful with turbo-style decoding of product codes in two or
more dimensions [46], [48], [54], [27]. In a product code, the

150 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Fig. 12. Belief network for decoding a pair of serially concatenated codes.

information is arranged in an -dimensional array, and then
encoded separately in each dimension. Thus, the appropriate
belief network is like the ones in Figs. 7 and 9 (a product
code, is, by definition, systematic). We have experimented
with “BP” decoding of product codes, and obtained results
similar to those in the cited references. However, in this case,
it appears that the BP algorithms differ in some small details
from turbo-style decoding, and we are currently investigating
this phenomenon.

“Tail-Biting” Convolutional Codes: The class of “tail-
biting” convolutional codes introduced by Solomon and van
Tilborg [56] is a natural candidate for BP decoding. Briefly,
a tail-biting convolutional code is a block code formed by
truncating the trellis of a conventional convolutional code and
then pasting the ends of the trellis together. If the parent
convolutional code is an code, and if the truncation
depth is the resulting tail-biting code is an block
code.

In Fig. 13, we show a belief diagram for a tail-biting code
where the truncation depth is Assuming as above that
the parent convolutional code is an code, then in Fig. 13,
the ’s are -bit information words, and the ’s are -bit
codeword segments. The’s are the observed noisy versions
of the ’s. The nodes intermediate between the information
words and the codeword segments are pairs of encoder states.
For a given encoder state pair and information
word the encoder rules (deterministically) produce the next
pair of codeword states and the next codeword
segment If it were not for the “tail-biting” edge from

to this belief net would be without loops
and would represent an ordinary convolutional code. If, then,
the BP algorithm were applied, the result would be identical
to the BCJR APP decoding algorithm.10

If we were to apply Pearl’s algorithm to the belief diagram
of Fig. 13, we would obtain an iterative decoding algorithm for
the tail-biting code. To our knowledge, no one has done exactly
that, but Wiberg [67] has applied his algorithm to the Tanner

10In this connection, we should note that Wiberg [67] has observed that
his algorithm, when applied to a Tanner graph similar to Fig. 13 (less the
tail-biting edge), also implies the BCJR algorithm. The “min-sum” form
of Wiberg’s algorithm, when applied to the same graph, is closely related
to Viterbi’s algorithm. Incidentally, there is a “min-sum” version of Pearl’s
algorithm described in [44, Ch. 5], called “belief revision,” which does the
same thing.

Fig. 13. Belief network for decoding a tail-biting convolutional code, illus-
trated for a truncation length ofN = 5:

graph of a tail-biting code with good success, and functionally,
these two approaches yield virtually identical algorithms.
Forney [24] has also discussed the iterative decoding of tail-
biting codes using the Tanner–Wiberg approach.

VIII. C ONCLUDING REMARKS

We have shown that Pearl’s algorithm provides a systematic
method for devising low-complexity, suboptimal iterative de-
coding algorithms for a wide variety of error-control systems.
Although there is as yet no guarantee that these algorithms will
give useful results, the great body of experimental work done
in the “turbo-code” literature suggests that the performance is
likely to be very good.

One of the most interesting historical aspects of the turbo de-
coding problem is how often in the past inventors of decoding
algorithms have hit upon a “BP”-like algorithm. The earliest,
almost clairvoyant, occurrence is in the papers of Gallager
[25], [26]. Later, Tanner [61], realizing the importance of
Gallager’s construction, made an important generalization of
low-density parity check codes, and of Gallager’s iterative
decoding algorithm. With hindsight, especially in view of
the recent work of Wiberg [67], it is now evident that both
Viterbi’s algorithm [64], [23] and the BCJR algorithm [4] can
be viewed as a kind of belief propagation. Indeed, Wiberg
[66], [67] has generalized Gallager’s algorithm still further,
to the point that it now resembles Pearl’s algorithm very
closely. (In particular, Wiberg shows that his algorithm can
be adapted to produce both the Gallager–Tanner algorithm
and the turbo decoding algorithm.) Finally, having noticed the
similarity between the Gallager–Tanner–Wiberg algorithm and
Pearl’s algorithm, Aji and McEliece [1], [2], relying heavily
on the post-Pearl improvements and simplifications in the BP
algorithm [29], [30], [52], [58], [59] have devised a simple
algorithm for distributing information on a graph that is a
simultaneous generalization of both algorithms, and which
includes several other classic algorithms, including Viterbi’s
algorithm (which is already subsumed by Wiberg’s algorithm
in “min-sum” form) and the FFT. It is natural to predict
that this algorithm or one of its close relatives will soon

MCELIECE et al.: TURBO DECODING AS PEARL’S ALGORITHM 151

become a standard tool for scientists in communications, signal
processing, and related fields.

We conclude with our view of “why” turbo coding is so
successful. We believe that there are two, separable, essential
contributing factors.

First: The presence of the pseudorandom interleavers be-
tween the component codes ensures that the resulting overall
code behaves very much like a long random code, and by
Shannon’s theorems, a long random code is likely to be “good”
in the sense of having the potential, with optimal decoding,
to achieve performance near channel capacity. But optimal
decoding would be impossibly complex. This brings us to the
second essential factor.

Second: We believe that there are general undiscovered the-
orems about the performance of belief propagation algorithms
on loopy DAG’s. These theorems, which may have nothing
directly to do with coding or decoding, will show that in some
sense BP “converges with high probability to a near-optimum
value” of the desired belief on a class of loopy DAG’s that
includes most or all of the diagrams in Figs. 7, 9, and 10–13
of this paper. If such theorems exist, they will no doubt find
applications in realms far beyond information theory.

ACKNOWLEDGMENT

The authors wish to thank P. Smyth for apprising them
about the “post-Pearl” developments in the belief propagation
algorithm, and one of the referees for supplying them with
much of the history of the forward–backward algorithm that
appears in Section IV.

REFERENCES

[1] S. Aji and R. J. McEliece, “A general algorithm for distributing
information on a graph,” inProc. 1997 IEEE Int. Symp. Inform. Theory,
Ulm, Germany, June 1997, p. 6.

[2] , “The generalized distributive law,” inProc. 4th Int. Symp. Com-
mun. Theory Appl., Ambleside, U.K., July 1997, pp. 135–146. Revised
version available from http://www.systems.caltech.edu/EE/Faculty/rjm.

[3] J. Andersen, “The TURBO coding scheme,” unpublished manuscript
distributed at1994 IEEE Int. Symp. Inform. Theory, Trondheim, Norway,
June 1994.

[4] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,”IEEE Trans. Inform.
Theory, vol. IT-20, pp. 284–287, Mar. 1974.

[5] A. S. Barbulescu and S. S. Pietrobon, “Interleaver design for three
dimensional turbo-codes,” inProc. 1995 IEEE Int. Symp. Inform. Theory,
Whistler, B.C., Canada, Sept. 1995, p. 37.

[6] L. E. Baum and T. Petrie, “Statistical inference for probabilistic func-
tions of finite state Markov chains,”Ann. Math. Statist., vol. 37, pp.
1554–1563, 1966.

[7] S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results
on parallel concatenated coding schemes,”IEEE Trans. Inform. Theory,
vol. 42, pp. 409–428, Mar. 1996.

[8] , “Serial concatenation of block and convolutional codes,”Elec-
tron. Lett., vol. 32, pp. 887–888, May 1996.

[9] S. Benedetto, G. Montorsi, D. Divsalar, and F. Pollara, “Serial concate-
nation of interleaved codes: Performance analysis, design, and iterative
decoding,”JPL TDA Progr. Rep., vol. 42-126, Aug. 1996.

[10] G. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding: Turbo codes,” inProc. 1993 Int. Conf. Com-
mun., Geneva, Switzerland, May 1993, pp. 1064–1070.

[11] R. W. Chang and J. C. Hancock, “On receiver structures for channels
having memory,”IEEE Trans. Inform. Theory, vol. IT-12, pp. 463–468,
Oct. 1966.

[12] J.-F. Cheng and R. J. McEliece, “Unit memory Hamming turbo codes,”
in Proc. 1995 IEEE Int. Symp. Inform. Theory, Whistler, B.C., Canada,
Sept. 1995, p. 33.

[13] , “Near capacity codecs for the Gaussian channel based on low-
density generator matrices,” submitted to 1996 Allerton Conf.

[14] J.-F. Cheng, “On the construction of efficient multilevel coded modula-
tions,” submitted to the 1997 IEEE Int. Symp. Inform. Theory.

[15] , “Iterative decoding,” Ph.D dissertation, Caltech, Pasadena, CA,
Mar. 1997.

[16] G. Cooper, “The computational complexity of probabilistic inference
using Bayesian belief networks,”Artif. Intell., vol. 42, pp. 393–405,
1990.

[17] P. Dagum and M. Luby, “Approximating probabilistic inference in
Bayesian belief networks is NP-hard,”Artif. Intell., vol. 60, pp. 141–153,
1993.

[18] D. Divsalar and F. Pollara, “Turbo codes for deep-space communica-
tions,” TDA Progr. Rep., vol. 42-120, pp. 29–39, Feb. 15, 1995.

[19] , “Multiple turbo codes for deep-space communications,”TDA
Progr. Rep.vol. 42-121, pp. 66–77, May 15, 1995.

[20] D. Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, “Transfer
function bounds on the performance of turbo codes,”TDA Progr. Rep.
vol. 42-122, pp. 44–55, July 15, 1995.

[21] D. Divsalar and R. J. McEliece, “Effective free distance of turbo-codes,”
Electron. Lett., vol. 32, pp. 445–446, Feb. 1996.

[22] G. D. Forney, Jr.,Concatenated Codes. Cambridge, MA: MIT Press,
1966.

[23] , “The Viterbi algorithm,”Proc. IEEE, vol. 63, pp. 268–278, Mar.
1973.

[24] , “The forward-backward algorithm” inProc. 34th Allerton Conf.
Commun., Contr., Computing, Allerton, IL, Oct. 1996.

[25] R. G. Gallager, “Low-density parity-check codes,”IRE Trans. Inform.
Theory, vol. IT-8, pp. 21–28, Jan. 1962.

[26] , Low-Density Parity-Check Codes. Cambridge, MA: MIT
Press, 1963.

[27] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary
block and convolutional codes,”IEEE Trans. Inform. Theoryvol. 42,
pp. 429–445, Mar. 1996.

[28] D. Heckerman and M. P. Wellman, “Bayesian networks,”Commun.
ACM, vol. 38, pp. 27–30, 1995.

[29] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen, “Bayesian updating
in recursive graphical models by local computations,”Computational
Statist. Quart., vol. 4, pp. 269–282, 1990.

[30] F. V. Jensen,An Introduction to Bayesian Networks. New York:
Springer-Verlag, 1996.

[31] J. H. Kim and J. Pearl, “A computational model for combined causal
and diagnostic reasoning in inference systems,” inProc. 8th Int. Joint
Conf. AI (IJCAI83), Karlsruhe, Germany, pp. 190–193.

[32] R. Kindermann and J. L. Snell,Markov Random Fields and their
Applications. Providence, RI: American Mathematical Society, 1980.

[33] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound
codes by probability propagation in graphical models, this issue, pp.
219–230.

[34] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to expert
systems,”J. Roy. Statist. Soc., Ser. B, vol. 50, pp. 157–224, 1988.

[35] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer,
“Independence properties of directed Markov fields,”Networks, vol. 20,
pp. 491–505, 1990.

[36] D. J. C. MacKay, “A free energy minimization framework for infer-
ence problems in modulo 2 arithmetic,” inFast Software Encryption,
B. Preneel, Ed. Berlin, Germany: Springer-Verlag Lecture Notes in
Computer Science, vol. 1008, 1995, pp. 179–195.

[37] D. J. C. MacKay and R. Neal, “Good codes based on very sparse
matrices,” inProc. 5th IMA Conf. Cryptography and Coding, C. Boyd,
Ed. Berlin, Germany: Springer Lecture Notes in Computer Science,
vol. 1025, 1995, pp. 100–111.

[38] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” submitted toIEEE Trans. Inform. Theory.Preprint available
from http://wol.ra.phy.cam.ac.uk.

[39] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,”Electron. Lett., vol. 32, pp. 1645–1646,
Aug. 1996. Reprinted inElectron. Lett., vol. 33, pp. 457–458, Mar. 1997.

[40] P. L. McAdam, L. Welch, and C. Weber, “M.A.P. bit decoding of
convolutional codes,” inAbstr. Papers, 1972 IEEE Int. Symp. Inform.
Theory, Asilomar, CA, Jan. 1972, p. 90.

[41] R. J. McEliece, E. R. Rodemich, and J-F. Cheng, “The turbo decision
algorithm,” in Proc. 33rd Allerton Conf. Commun., Contr., Computing,
Oct. 1995, pp. 366–379.

[42] J. Pearl, “Reverend Bayes on inference engines: A distributed hierar-
chical approach,” inProc. Conf. Nat. Conf. AI, Pittsburgh, PA, 1982,
pp. 133–136.

152 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

[43] , “Fusion, propagation, and structuring in belief networks,”Artif.
Intell., vol. 29, pp. 241–288, 1986.

[44] , Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

[45] L. C. Perez, J. Seghers, and D. J. Costello, Jr., “ A distance spectrum
interpretation of turbo codes,”IEEE Trans. Inform. Theory, vol. 42, pp.
1698–1709, Nov. 1996.

[46] A. Picart and R. Pyndiah, “Performance of turbo decoded product codes
used in multilevel coding,” inProc. IEEE ICC’96, Dallas, TX, June
1996.

[47] A. M. Poritz, “Hidden Markov models: A guided tour,” inProc. 1988
IEEE Int. Conf. Acoust., Speech, Signal Processing. New York: IEEE
Press, vol. 1, pp. 7–13.

[48] R. Pyndiah, A. Glavieux, A. Picart, and S. Jacq, “Near optimum decod-
ing of product codes,” inProc. IEEE GLOBECOM’94, San Francisco,
CA, Nov. 1994, vol. 1, pp. 339–343.

[49] L. Rabiner, “A tutorial on hidden Markov models and selected ap-
plications in speech recognition,”Proc. IEEE, vol. 77, pp. 257–285,
1989.

[50] P. Robertson, “Illuminating the structure of code and decoder of parallel
and concatenated recursive systematic (Turbo) codes,” inProc. IEEE
GLOBECOM 1994, pp. 1298–1303.

[51] R. D. Shachter, “Probabilistic inference and influence diagrams,”Oper.
Res., vol. 36, pp. 589–604, 1988.

[52] G. R. Shafer and P. P. Shenoy, “Probability propagation,”Ann. Mat.
Artif. Intell., vol. 2, pp. 327–352, 1990.

[53] S. E. Shimony, “Finding MAPS for belief networks is NP-hard,”Artif.
Intell., vol. 68, pp. 399–410, 1994.

[54] J. Seghers, “On the free distance of turbo codes and related product
codes,” Ph.D. dissertation, Swiss Fed. Inst. Technol., Zurich, Switzer-
land, Aug. 1995, Final Rep., Diploma Project SS 1995.

[55] P. Smyth, D. Heckerman, and M. Jordan, “Probabilistic independence
networks for hidden Markov probability models,”Neural Computation,
accepted for publication.

[56] G. Solomon and H. C. A. van Tilborg, “A connection between block
and convolutional codes,”SIAM J. Appl. Math., vol. 37, pp. 358–369,
Oct. 1979.

[57] M. Sipser and D. A. Spielman, “Expander codes,”IEEE Trans. Inform.
Theory, vol. 42, pp. 1710–1722, Nov. 1996.

[58] D. J. Spiegelhalter and S. L. Lauritzen, “Sequential updating of condi-
tional probabilities on directed graphical structures,”Networks, vol. 20,
pp. 579–605, 1990.

[59] D. J. Spiegelhalter, A. P. Dawid, S. L. Lauritzen, and R. G. Cowell,
“Bayesian analysis in expert systems,”Statist. Sci., vol. 8, pp. 219–283,
1993.

[60] D. A. Spielman, “Linear-time encodable and decodable error-corecting
codes.” IEEE Trans. Inform. Theory, vol. 42, pp. 1723–1731, Nov.
1996.

[61] R. M. Tanner, “A recursive approach to low complexity codes,”IEEE
Trans. Inform. Theory, vol. IT-27, pp. 533–547, Sept. 1981.

[62] G. Ungerboeck, “Nonlinear equalization of binary signals in Gaussian
noise,” IEEE Trans. Commun. Technol., vol. COM-19, pp. 1128, Dec.
1971.

[63] S. Verdu and H. V. Poor, “Abstract dynamic programming models
under commutativity conditions,”SIAM J. Contr. Optimiz., vol. 25, pp.
990–1006, July 1987.

[64] A. J. Viterbi, “Error bounds for convolutional codes and an asymptot-
ically optimum decoding algorithm,”IEEE Trans. Inform. Theory, vol.
IT-13, pp. 260–269, Apr. 1967.

[65] J. Whittaker, Graphical Models in Applied Multivariate Statistics.
Chichester, U.K.: Wiley, 1990.

[66] N. Wiberg, H.-A. Loeliger, and R. K¨otter, “Codes and iterative decoding
on general graphs,”Europ. Trans. Telecommun.vol. 6, pp. 513–526,
Sept.–Oct. 1995.

[67] N. Wiberg, “Codes and decoding on general graphs,” Linköping Studies
in Sci. and Technol., dissertations no. 440. Linköping, Sweden, 1996.

Robert J. McEliece (M’70–SM’81–F’84) was born
in Washington, DC, in 1942. He received the B.S.
and Ph.D. degrees in mathematics from the Califor-
nia Institute of Technology, Pasadena, in 1964 and
1967, respectively, and attended Trinity College,
Cambridge University, U.K., during 1964–1965.

From 1963 to 1978, he was employed by the
California Institute of Technology’s Jet Propulsion
Laboratory, where he was Supervisor of the Infor-
mation Processing Group from 1971 to 1978. From
1978 to 1982, he was a Professor of Mathematics

and Research Professor at the Coordinated Science Laboratory, University of
Illinois, Urbana–Champaign. Since 1982, he has been on the faculty at Caltech,
where he is now the Allen E. Puckett Professor of Electrical Engineering.
Since 1990, he has also served as Executive Officer for Electrical Engineering
at Caltech. He has been a regular consultant in the Communications Research
Section of Caltech’s Jet Propulsion Laboratory since 1978. His research
interests include deep-space communication, communication networks, coding
theory, and discrete mathematics.

David J. C. MacKay was born in Stoke on Trent,
U.K., on April 22, 1967. Following his education
at Newcastle-under-Lyme School and Trinity Col-
lege, Cambridge, he received the Ph.D. degree in
computation and neural systems from the California
Institute of Technology, Pasadena, in 1991.

He is now a Lecturer in the Department of
Physics, Cambridge University and a Fellow of
Darwin College, Cambridge. His interests include
the construction and implementation of hierarchical
Bayesian models that discover patterns in data, the

development of probablistic methods for neural networks, and the design and
decoding of error correcting codes.

Jung-Fu Cheng was born in Taipei, Taiwan, in
March 1969. He received the B.S. and M.S. degrees
in electrical engineering from National Taiwan Uni-
versity, Taipei, Taiwan, in 1991 and 1993, respec-
tively, and the Ph.D. degree in electrical engineering
with a subject minor in social science from the
California Institute of Technology, Pasadena, in
1997.

His academic research interests focused on coding
and communications theory. Since July 1997, he has
been employed as a Research Analyst in the Fixed

Income Research Department of Salomon Brothers, Inc., New York, NY.

