140 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Turbo Decoding as an Instance of
Pearl’s “Belief Propagation” Algorithm

Robert J. McElieceFellow, IEEE David J. C. MacKay, and Jung-Fu Cheng

Abstract—In this paper, we will describe the close connection paper that motivated this one, is that of MacKay and Neal
between the now celebrated iterative turbo decoding algorithm [37]. See also [38] and [39].)
of Berrou et al. and an algorithm that has been well known In this paper, we will review the turbo decoding algorithm

in the artificial intelligence community for a decade, but which - .
is relatively unknown to information theorists: Pearl’s belief as originally expounded by Berroat al. [10], but which

propagationalgorithm. We shall see that if Pearl’s algorithm is Was perhaps explained more lucidly in [3], [18], or [50].
applied to the “belief network” of a parallel concatenation of We will then describe Pearl’s algorithm, first in its natural
two or more codes, the turbo decoding algorithm immediately «A|” setting, and then show that if it is applied to the “belief
results. Unfortunately, however, this belief diagram has loops, network” of a turbo code, the turbo decoding algorithm im-
and Pearl only proved that his algorithm works when there . ’ . .
are no loops, so an explanation of the excellent experimental mediately results. Unfortunate_ly, however,_ this belief network
performance of turbo decoding is still lacking. However, we shall has loops, and Pearl's algorithm only gives exact answers
also show that Pearl’s algorithm can be used to routinely derive when there are no loops, so the existing body of knowledge
previously known iterative, but suboptimal, decoding algorithms  gpout Pearl’s algorithm does not solve the central problem

for a number of other error-control systems, including Gallager’s : S - .
low-density parity-check codes, serially concatenated codes, andmc turbo decoding. Sitill, it is interesting and suggestive that

product codes. Thus, belief propagation provides a very attrac- Pearl’s algorithm yields the turbo decoding algorithm so easily.
tive general methodology for devising low-complexity iterative Furthermore, we shall show that Pearl’s algorithm can also be
decoding algorithms for hybrid coded systems. used to derive effective iterative decoding algorithms for a
Index Terms—Belief propagation, error-correcting codes, iter- Number of other error-control systems, including Gallager's
ative decoding, Pearl's Algorithm, probabilistic inference, turbo low-density parity-check codes, the recently introduced low-
codes. density generator matrix codes, serially concatenated codes,
and product codes. Some of these “BP” decoding algorithms
agree with the ones previously derived by ad hoc methods,
. ] ] and some are new, but all prove to be remarkably effective. In
T URBO codes, which were introduced in 1993 by Berrouy pelief propagation provides an attractive general method
etal.[10], are the most exciting and potentially importanf,, jeyising low-complexity iterative decoding algorithms for
development in coding theory in many years. Many of thr‘r?ybrid coded systems. This is the message of the paper. (A

structural properties of turbo codes have now been put Qfhilar message is given in the paper by Kschischana and
a firm theoretical footing [7], [18], [201, [21], [27], [45], and fre (331 1 e iSSSe_) paper by g

several innovative variations on the turbo theme have appearegi|ere is an outline of the paper. In Section II, we derive

[51, [8l, [.9]’ [.12]’ [2.7]’ [48]. . ) . some simple but important results about, and introduce some
What is still lacking, however, is a.satlsfact(_)ry theoretlcajompact notation for, “optimal symbol decision” decoding
explanation of why the turbo decoding algorithm performgI orithms. In Section Ill, we define what we mean by a

as well as it does. While we cannot yet announce a soluti bo code, and review the turbo decoding algorithm. Our

o tlhls pr(t)b(ljem,Pwe lt?ellt?\llg fthat the a;pswelr mf"tlz Comehfromefinitions are deliberately more general than what has previ-
a close study oreart's beliet propagation algoriininwhic ously appeared in the literature. In particular, our transmitted

is largely unknown to information theorists, but well know?nformation is not binary, but rather comes from gaary

in the artificial intelligence community. (The first mention o Iphabet, which means that we must deal witiry probability
belief propagation in a communications paper, and indeed tg]igtributions instead of the traditional “log-likelihood ratios.”
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U=(y,..., U B Ys=(fst Ysk) (A communication theorist would use the terna poste-
i riori probability,” rather than “belief.”) Ifag is such that
E X‘_Eg Y1 BEL;(ag) > BEL;(a), for all @ # ag, the decoder infers that

1

U; = ap. The following straightforward computation is central
Fig. 1. CodewordX = (U, X ) is transmitted over a memoryless channefO our results. In this computation, and for the rest of the paper,
and received a¥ = (Y, Y1). we will use Pearl’'se notation [44].

Definition 2.1: If £ = (z1,---,2,) andy = (y1,- -+, Ym)

we describe Pearl’'s BP algorithm, which can be defined Gle vectors of nonnegative real numbers, the notation

any belief network, and which gives an exact solution to the
probabilistic inference problem when the belief network has
no loops. In Section VI, we show that the turbo decodingmeans thatz; = w;/(X72; w), for ¢ = 1,---,m. In
algorithm follows from a routine application of Pearl’s algoeother wordsz is a probability vector whose components are
rithm to the appropriate (loopy) belief network. In Section Vliproportional to those of. (If f(x) andg(x) are nonnegative
we briefly sketch some other decoding algorithms that can fal-valued functions defined on a finite set, the notation
derived from BP considerations. Finally, in Section VIII, wef(z) = ag(z) is defined similarly.)
summarize our findings and venture some conclusions. Lemma 2.2:If the likelihood p(ys;|u;)! is denoted by
Ai(w;), then the belieBEL;(a) defined in (2.4) is given by

r=qay

Il. PRELIMINARIES k
In this section, we will describe a general classgedry BEL;(a) =« Z p(y;|%1) H i(wy)mi(uy)

systematic encoders, and derive the optigyahbol-by-symbol Uiui=a
decoding rule for a memoryless channel. k
LetU = (U, - - -, Ux) be ak-dimensional random vector of = a(a)m;(a) Z p(yq|%1) H () (uy).
independent, but not necessarily equiprobable, symbols from U:us;=a j=1
a g-letter alphabetd, with Pr{U; = a} = 7;(a), for a € A. e
The vectorU represents information to be transmitted reliably (2.5)
over an unreliable channel. We suppose thais encoded Proof: We have, by the definition (2.4)BEL;(a) =
systematicallyi.e., mapped into a codewoi of the form Pr{U; = alY = y}. Then
X =(U,X)) @1 pry, =gy =y}
whereU is the “systematic” part an& ; is the “nonsystem- _Pr{Y =y, U; =a}
atic” part of the codeword. In the rest of the paper, we will N Pr{Y = y}
sometimes callX; a codeword fragment =aPr{Y =y,U; =a} (using thex notation
We assume that the codeword is transmitted over a _ Z
noisy channel with transition probabilitiegy|x) def Pr{Y = N au —
y|X = z}, and received a¥ = (Y,,Y;), whereY, is .
the portion ofY corresponding to the systematic part of the =« Z p(ylu) -
codewordU, and Y; is the portion corresponding to the Uiui=a
codeword fragmenk ;. We assume further that the channel is k
memoryless, which implies that the conditional density factors =« Z p(ylz0)p(yslu) - H uj) by (2.2)
according to the rule U ui=a . =1
p(ylz) =p(y, y1|u, z1) =« Z p(yi|zL) - H (uj)mi(u;) by (2.3)
= ply.[u)p(y: o) @2) e o,
<Hp Ysilu:) ) Py, |z1) (2.3) = Mi(a)m(a)uz p(y1lz1) Hl A ()i (u;)-
LU =a j=
JF#i

wherey,, denotes theth component ofy,. The situation is
depicted in Fig. 1.

The decoding problenis to “infer” the values of the hidden
variablesU; based on the “evidence,” viz. the observed value['s
ys andy; of the variablesY'; andY;. The optimal decision

The last two lines of the above calculation are the assertions
of the lemma. [ |

We see from (2.5) thaBEL;(a) is the product of three
erms. The first term);(a), might be called thesystematic

, the one that minimizes the probability of inferring an gvidencaerm. The second term,(a), takes into account the

mcorrect value fol-. is the one based on the conditional probprlorl distribution ofU;. Note that the effect of the systematic
o RO . . . . __evidence is, in effect, to change the prior distributionlgf
ability, or “belief,” that the information symbol in question

has a given value from m;(a) to am;(a)A;(a). The third term, which is more

def LIf the encoder is not systematic, i.e., if the uncoded information symbols
BEL;(a) = Pr{lU; =alY,; =y, Y1 =y, }. (2.4) U; are not transmitted, these likelihoods should all be set equal to one.
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TABLE |
UPDATE RULES FOR PEARL'S ALGORITHM (HERE, (¥) = vjv2 - ¥p, IF U = (v, ++, V)
Is A VECTOR OF REAL NUMBERS)

quantity (at X) Type Update Rule
1. wx (u) Ay, x -+ x Ay, — RM <y, x(u) >
(1 if X has no parents)
2. Ax(xz) Ax - R < /\y,x(m) >
(1 if X has no children)
3. 7x () Ax - R 2o p(zlu)px (u)
(p(x) if X has no parents)
4. vx (u) Ay, x -+ x Ay,, — R > Ax(@)p(z|u)
5. BEL x (z) Ax — R a - Ax(x)wx (x)
5 Ax,u(u) Ay, x -- x Ay, — RM TU,X © X
7x.y; (%) Ax — RV mx () - ngv;; Avix(z)

complicated, takes into account the geometry of the codehere the codeword fragmemrt = z;(u) is a deterministic
Following [10], we will call this term theextrinsicterm, and function ofw. Then Lemma 2.2 can be summarized as follows:

denote it byE;(a). Th_e extrinsic term is_ SO impprtant to Wha_t BEL = ar(r o p) (2.9)
follows that we shall introduce a special notation for it. (This

notation will also prove useful in Section V, where we shahereéA(w) = (Ar(u1), -+, Aw(ur)) andw(w) = (7 (1),
use it to describe Pearl’s algorithm—see Table |, line 6.) "> x(ur))-

Thus, let Ay, .-, A be finite alphabets, leV C A4; x

- x Ay, and let R denote the set of real numbers. Let
g = (g1,-+,q:) be a function mapping/ into R*. In
other words,g is a vector ofk real-valued functions, and if

Ill. SYSTEMATIC PARALLEL CONCATENATED
(TurBO) CODES

uw = (u,---,uy) € U, then In this section, we will define what we mean by a turbo code,
and present a general version of the turbo decoding algorithm.
gluw) = (g1(u1), -, grlur)). With the same setup as in Section Il, suppose we have two
_ _ _ systematic encodings df
Now, suppose thak () is a real-valued function defined on C:U — (U, X))

the setU, which we call akernel The K transform ofg is

the vectorg’ = (g, -, g}.), Whereg] is defined by Co: U = (U, X3).
One way to combin€; and(, into a single code is via the
k mapping
gia)= > K@) [] as(w)- (2.6)
Wiwi=a i C:U—X=(U,X1,X3)

We summarize (2.6) by writing which is called theparallel concatenatiorof ¢; and(,, or the

turbo codeformed by combining’; andCs.
Once again, we assume that the codewlris transmitted
éhrough a noisy channel with transition probabilitigg|x). It
is received a¥ = (Y,,Y1,Y ), whereY, is the component
of Y corresponding tdJ,Y; is the component o¥ corre-
sponding taX, andY >, is the component o corresponding
hi(a) = fi(a)gi(a). (2.8) 10X,. We assume again that the channel is memoryless, which
implies that the conditional density factors according to the
Using the circle and adjacent notatibwe can express the rule
result of Lemma 2.2 compactly. To do so, we tdke= A*, plylz) = p(
(

¢ =gokK. 2.7)

Next, if f andg are vector-valued functions as above, we d
fine theiradjacent produch = fg as a simple componentwise
product, i.e.,h = (hy,---, hx), where

y57y17y2|u7$17$2)

and define a kern as
Pw) Py, [w)p(y,z1)p(ys|z2) (3.1)

(w) < p(y,|z.) ya
P = P = Hp(ysiluz‘)>p(yllwl)p(yalw)- (3.2

2We assume that “adjacent” takes precedence over “circle” in order to ) . . . . .
minimize the use of parentheses. The situation is as depicted in Fig. 2.
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U=(y,..., U Ys=(Ysl,..., Ysk) Y —
% Ys —»| D
X1 My
Ej az
n:
Ti:
By l—2 02 72, n(4), (6), . .. (1), n3), n(5), ...
Fig. 2. Generic “turbo code.” The codewoAl = (U, X, X2) is trans- <
mitted over a memoryless channel and receive®as (Y,,Y,Y). Dy —— Y2
— Y

By Lemma 2.2, the optimal decisions for the turbo code afé 3 Block diagram of turbo decoding procedure.

based on the beliefs given.) If the decision is made aften iterations, themth

k turbo decisionis defined as
BEL;(a) =« Z p(y1|z1)p(ysl22) H (uj)m;(u;)
j=1

wata [A]i(m) = arg max BELEm)(a). (3.9
=aXi(@)mi(a) > plylz) We conclude this section by observing that, as we have
Usui=a stated it, the turbo algorithm [(3.7) and (3.9)] does not appear
k to be significantly simpler than the optimal algorithm (3.4)
P(y|w2) H Aj(ug)mj(ug). (33) since (for example) A o py) is not, in general, much easier
s=1 to compute thar(A o pyp2). The following theorem, and the

s discussion that follows, shed light on this problem.

For simplicity, and in accordance with engineering practice, Theorem 3.1:1f the components ot/ are assumed to be
from now on we will assume that the priori probability independent, withPr{l; = w;} = 7™ Y (w;), for i =
density of theU;’s is uniform, i.e.,m = (al,---,al). With 1 ... k. then
this assumption, using the notation introduced in Section II,

(3.3) becomes ™ (a) =« Pr{[(] )_(a|Y15)’(Y)1}, if m is odd
()™
BEL = aA(A o p1p2) (3.4) _
_ il (C"Yj)’Y?}, if m is even (3.10)
where the kernelg; andp, are defined by Xi(a)m;™ " (a)

Proof: We consider the case. odd, the proof for even

pi1(w) =p(y;|z1) : . b .
! m being essentially the same. By reasoning similar to that in

p2(u) =p(ys|z2). (35 Lemma 2.2, we find that
The celebrated “turbo decoding algorithm” [10], [50], [3] Pr{U; = alY,,Y1}
is an iterative approximation to the optimal beliefs in (3.3) ’ k
or (3.4), whose performance, while demonstrably suboptimal = Z (y1]u) H (m 1) ;). (3.11)

[41], has nevertheless proved to be “nearly optimal” in an im-
pressive array of experiments. The heart of the turbo algorithm
is an iteratively defined sequeng&™ of product probability If we divide both sides of (3.11) by;(a Y; (m= 1)( ), we obtain
densities ond* defined by

PI‘{[]Z = CL|Y5,Y1} _ (m 1) )
7f(0) e (04]_7 e Oé].) (36) )\i(a)’]r(rn—l) (a) - uz y1|’l.l, H U,])

U: v;=a j=1

x>~

J=1
i.e., 79 is a list of & uniform densities om, and form > 1 g
=A™V op,. (3.12)
m) _ Jaxn(m Y op,, if m is odd BN o
T T ladm™m D op,,  if mis even. ') Since by (3.7)a™ = adx(™=1) o p;, the theorem follows.
]
Then themth turbo belief vectoiis defined by The significance of Theorem 3.1 is that it tells us that the
(m) _ (m). (m—1) appropriate components of the vectaf&?) can be computed
BEL oA m ' (3.8) by a decoder fo€; (or C2) which is capable of computing the
The general form of (3.7) is shown in Fig. 3. probabilities Pr{U; = a|Y,, Y1}, based on an observation

In a “practical” decoder, the decision about the informatioff the noisy codeword” = (Y',,Y), i.e., an optimal “soft”
bits is usually made after a fixed number of iterations. (TH&/mbol decision decoder. Thén component of the message
hope that the limit of (3.8) will exist is, in general, a vairPassed to the second decoder module is then
one since, in [41], several examples of nonconvergence are 7r(m)(a) _ Pr{U;=alY, Y}

3As we observed earlier, the effect fis to change the prior distribution ! )\i(a)wgm_l)(a)
from @ to Aw. It follows that if there is a nonuniform priow, it can be . ) o . .
accounted for by replacing every occurrence &f ih our formulas withAz. ~ which is the “extrinsic information” referred to earlier.

(3.13)
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One of the keys to the success of turbo codes is to use com- Vi Vo
ponent code€; andC, for which alow-complexitysoft bit de-
cision algorithm exists. For example, the BCJR or “APP” de-
coding algorithm [4] provides such an algorithm for any code,
block or convolutional, that can be represented by a tréllis.

As far as is known, a code with a low-complexity optimal
decoding algorithm cannot achieve high performance, which V3 V4
means that individually, the cod€s andC,; must be relatively
weak. The brilliant innovation of Berrowet al. [10] was
to devise a code of the type shown in Fig. 2, in which
the individual codes’; and C, are indeed relatively weak
(but have a low-complexity decoding algorithm), in such a
way that that the overall code is very powerful. Roughly Vs
speaking, they accomplished this by making the encdder
dentcal to £y, except for a random permtation (accomEi, . e SenHle e DAS wek Seresere 2 eueriane et
plished by the “interleaver”) of the inputs. (The encoders Wetgq ... forming a loop.
short-constraint-length systematic convolutional encoders with
feedback.) However, since it is the object of this paper toor J. To simplify notation, we assume¢ = 1, and J =
study the decoding algorithm without regard to the resultingn + 1,---, N}. Then we have
performance, we shall not discuss the constructive aspect of (X, = al€)

turbo codes further. P
=« Z p(a7$27'"7$nuarn+17"'7aN)- (41)

IV. BACKGROUND ON PROBABILISTIC INFERENCE BAYESIAN Tt ]
BELIEF NETWORKS AND PEARL’'S ALGORITHM If X, can assumey; different values, then computing the
sum in (4.1) for each possible value @frequiresq; ¢ - - - gm,

additions, which is impractical unless and theg;’s are very
|$Small numbers.

The idea behind the “Bayesian belief network” approach
&8], [51] to this inference problem is to exploit any “partial
independencies” which may exist among tkigs to simplify
belief updating. The simplest case of this is when the random

In this section, we will give a tutorial overview of the
so-calledprobabilistic inference problenof the artificial in-
telligence community, as well as a brief discussion of Pear
algorithm, which solves the probabilistic inference problem i
many important special cases.

Thus, letX = {X;, X, -+, Xx}° be a set ofN discrete
random variables, whereX; assumes values in the finite

alphabetd,. The joint density function vanablele,---., X are mutually |pdependent, in vyh|ch
case the work in (4.1) can be avoided altogether since an
p(x) =p(x1, 22, +,TN) observation of one such variable cannot affect our belief in
def Pr{X, =1, -, Xy = ay) another. More generally, the partial independencies can be

described by alirected acyclic graphor DAG.
is then a mapping from¥; x --- x Ay into the set of real A DAG is a finite, directed graph, in which there are no
numbersR. We assume that the marginal densitjgs;) < directed cycles. For example, Fig. 4 shows a DAG with five
Pr{X; = z;} are also known. The marginal density funcvertices and five edges. Let us agree that if there is a directed
tion p(x;) represents oua priori “belief” about the random edgea — b, thena will be called a “parent” ofs, andb will
variable X;. Now, suppose that one or more of these randobe called a “child” ofa. If the set of parents of a vertexis
variables is measured or “observed.” This means that theredisnoted bypa(v), then we can describe the graph of Fig. 4
asubsev C {1,2,---, N} (the evidence set) such that, for allas follows:

J € J, the random variableX; is known to have a particular

value, sayq;. The evidences then defined to be the event pagvli :g
palvz) =
E=t=apiel) pa(us) = {u1}
The fundamentaprobabilistic inference problenis to com- pa(vy) = {vi,v2}
pute theupdated beliefsi.e., thea posteriori or conditional pa(vs) = {vs, vs}. 4.2)

probabilitiesp(X;|€), for all ¢ ¢ J. _ o _ _
The brute force approach to computipgX;|€) is to sum  |f G is @ DAG, and ifX is a set of random variables in
over all of the terms ofp(z) which do not involve either One-to-one correspondence with the verticesGofthe joint

. _ _ o density functionp(z) is said tofactor according toG if
As we shall see in Section IV, the BCJR algorithm itself, and the many
variations of it, are themselves special cases of Pearl's algorithm. In this N
application, the algorithm is provably exact since the corresponding “belief’ p(z1,--,oN) = Hp(a:z|pa(azz)) (4.3)
diagram has no loops. iy
5We have already used upper cakés to denote codeword components, .
for example, (2.1). We use upper ca&es here to denote arbitrary random wherepa(z;) denotes a value assignment for the parents of

variables, and hope no confusion will occur. For example, a five-variable density functigizy,---,z5)
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Ys1 o Ys2 Ys(k-1 Ysk  Noisy information bits X1 X2 X3 X4 X5
(visible)
[ I N
U1 Uz Uk-1 Uk Information bits
(hidden)
Codeword Fragment :
X) (hidden) Y1 Y2 Y3 Y4 s
Fig. 6. Bayesian network for the “hidden Markov chain” problem. Here,
. X1, -+, X form a Markov chain, and7,---,Yy are noisy versions of
Noisy codeword Xy, -+, XxN. The problem is to compute the conditional probabilities of the
Yi Fragment hidden variables\; based in the “evidence” variablés.
(visible)
Fig. 5. Bayesian network interpretation of the decoding problem. A mor? peritabIe applicatior_1 Of. Pearl’s algorithm is to
the classic “hidden Markov chain” inference problem, where
factors according to the graph of Fig. 4 if the appropriate Bayesian network is shown in Fig. 6. Here,

3 the result is a linear-time exact solution which is function-
p($17$27$37$47$0) . . “ . »
ally identical to the celebrated “forward—backward algorithm
= pley)ple)p(es|z)p(esles, w2)p(esles, 24). (44 Giscovered in the 1960's and 1970's.

A set of random variableX whose density functions factor For us, the important feature of Pearl’s BP algorithm is that
according to a given DAG is called @irected Markov field it can be defined for an arbitrary DAG which is not necessarily
[35], [32], [65]. For example, ifG is a directed chain, then a tree, even though there is no guarantee that the algorithm will
X is an ordinary Markov chain. A DAG, together with theperform a useful calculation if there are loops in the DAG.
associated random variable$, is called aBayesian belief We believe that the key to the success of turbo codes, and a
network or Bayesian networkor short [28]. potentially important research area for the Al community, is

At this point, we observe that the general coding framewotkie experimentally observed fact that Pearl’s algorithm works
of Fig. 1 can be represented as the Bayesian network showipproximately” for some loopy, i.e., nontree DAGsWe
in Fig. 5. From the decoder’s viewpoint, the observed noisgshall explain the connection between turbo codes and BP in
information bitsY;; are probabilistic functions of the hiddenSection VI, after first describing the BP algorithm in detail in
information bitsU;. Similarly, the observed noisy codewordSection V. For now, as a preview of coming attractions, we
fragment Y, is a probabilistic function of the codewordpresent Fig. 7, which is a loopy Bayesian network appropriate
X1, which in turn is a deterministic function of the hidderfor the turbo decoding problefh.
input bits. (Fig. 5 implies that the information biis; are
independent.) The decoder’s problem is thus to infer the values
of the hidden variable$/; based on the evidence variables
(Yy1, -, Ys) and Y. In this section, we will give a detailed functional description

Bayesian networks can sometimes lead to consideraBfePearl’s algorithm as described in [44, Ch. 4].

simplifications of the probabilistic inference problem. The
P P P ~ "The forward-backward algorithm has a long and convoluted history that

most important of these simplifications, for our purposes, jgeits the attention of a science historian. It seems to have first appeared
Pearl’'sbelief propagationalgorithm. In the 1980’s, Kim and in the unclassified literature in two independent 1966 publications [6], [11].

Pearl [31] [42]_[44] showed that if the DAG is a “tree,”Soon afterwards, it appeared in papers on MAP detection of digital sequences
' ' in the presence of intersymbol interference [23]. It appeared explicitly as an

i.e., if there are no 'Ioop%lhgn there are efficient distributedggorithm for tracking the states of a Markov chain in the early 1970's [40],
algorithms for solving the inference problem. If all of thd4] (see also the survey papers [47] and [49]). A similar algorithm (in “min-

alphabetsd: have the same size Pearl’s alaorithm solves the SUm” form) appeared in a 1971 paper on equalization [62]. The algorithm
P i £ 9 was connected to the optimization literature in 1987 [63]. All of this activity

inference prpblem on trees with(N¢“) computations, Where appears to have been completely independent of the developments in Al that
¢ is the maximum number of parents of any vertex, rather th& to Pearl’s algorithm!

O(q™), wherem is the number of unknown random variables, 8Thete is an “exact” inference algorithm for an arbitrary DAG, developed
which is required by the brute-force method. The efficientfg Lauritzen and Spiegelhalter [34], which solves the inference problem with

. i . éNC(TI) computations, wheré/.. is the number of cliques in the undirected
of belief propagation on trees stands in sharp contrast (@ngulated “moralized” grapli,,, which can be derived front, and J is

the situation for general DAG’s since, in 1990, Cooper [16fe maximum number of vertices in any cliqueGh.,. However, this proves

showed that the inference problem in general DAG's is Nrpt to be helpful in the turbo decoding problem since the appropriate DAG
duces moralized graphs with huge cliques. For example, the turbo codes

pr
hard. (See also [17] and [53] for more on the NP hardnessiﬁ’%m} have an associate@,, with a clique of size 16 384.
probabilistic inference in Bayesian networks.) 90ur Fig. 7 should be compared to Wiberg [67, Fig. 2.5], which describes

Since the network in Fig. 5 is a tree, Pearl’s algorithm Wilh?( “Técljnffflﬂ graph” gf a turbo code. Tr?e figtl)lres féwe Sim“é}f, but there is
; ; P ) : ey difference. Wiberg incorporates the turbo code’s interleaver, citing it
apply. Howe\_/er' the r_eSU|t IS unlnterestlng._ Pearl's algomhﬁhe interleaver) as necessary for ensuring that there are no short cycles in
applied to this Bayesian network merely gives an alternativ@ graph. In our Fig. 7, on the other hand, there are many short cycles. It
derivation of Lemma 2.2. is our belief the presence of short cycles does not, at least in many cases,
compromise the performance of the decoding algorithm, although it may
6A “loop” is a cycle in the underlying undirected graph. For example, inlegrade the quality of the code. We will expand on these remarks at the
the DAG of Fig. 4,v; — v4 — v — v3 — v1 iS a loop. conclusion of the paper.

V. DETAILED DESCRIPTION OFPEARL’'S ALGORITHM
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Ys1 Ys2 Ys(k-1 Ysk . . . Parents of X
5 &b Noisy information bits

(visible) Ui U UM

Information bits
(hidden)

“knows” p(x|u)
Codeword Fragments X |

(hidden)

Noisy codeword

Fragments Y Y Y
(visible) e N

. . . . . Children of X
Fig. 7. Bayesian network interpretation of the turbo decoding problem. Note

the presence of many loops, i.&l; — Xo — Uz — X — Uj. @)

Pearl's belief propagation algorithm is a decentralized
“message-passing” algorithm, in which there is a processor Ty,x ™ l
associated with each vertex off. Each processor can X
communicate only with its parents and children. Furthermore,
the processor associated with a variatieis assumed to A @ T
“know” the conditional density functiop(z|u) %' Pr{X = v.X
z|Uy = w,--+, Uy = upt, Where Uy, ---, Uy are the Y
parents ofX. (If X has no parents, this knowledge is assumed (b)
to be the marginal density functiop(x) & Pr{X = z}.)
Thus, the “local environment” of a nod& is as shown in U
Fig. 8(a).
When a processor is activated, it “reads” the messages T AW
received from each of its parents and children, updates its xu
belief based on these messages, and then sends new messages X
back to its parents and children. l Tyy ®
The message a node€ receives from its parert;, denoted
7y, x (u;), is in the form of a list of probabilities ¢ for
“probability”), one for each valueu; € Ay,. Informally, Y
7u, x (u;) is the probability of the evert; = u;, conditioned ©
on the evidence in the tree already “known”&tp. Similarly, Fig. 8. Summary of Pearl's algorithm. (Boldface symbols denote random
the messag& receives from its Child/j, denotedAYhX (a:), jg Vvectors; ordinary symbols represent random variables.)
in the form of a list of nonnegative real numbers (likelihoods:
“A" for “likelihood”), one for each value ofr € Ax.
Informally, Ay, x(x) is the probability of the evidenc&; the eventl/; = ;. Again, we adopt a vector notation
“knows,” conditioned on the evenk = z. For simplicity,
we adopt a vector notation for these incoming messages

o
h

€

AXl]('u') = (AXyl]l (U’l)v Tty )\X,UI\/I (U'JW))

o
h

WU,X(”) = (T, x (u1), -+, Uy, x (un)) WX,Y(UU) = (mxyi (@), mx v (). (5.2)

Ay x (@) E Qv x @) Avox (@), (B2
Y.x This situation is summarized in Fig. 8(c).

Additionally, each node of the graph keeps track of a

The situation is summarized in Fig. 8(b). number of other quantities

After X has been activated, the message figtasses to its
child Y;, denotedrx v,(x), is a list of probabilities, one for

each value of:. Roughly speakingr x v, (z) is the probability px (w): Ay, X - X Ay, — R
of the eventX = z, given the evidence in the tree already Ax(x):Ax - R

“known” to X, which now includes any new evidence which mx(z):Ax — R

may have been contained in the incoming messages. Similarly, (w): Ay, x - x Ay, — R
the message th& passes to its parehf;, denoted\x v, (u;), X T Uar

is the probability of the evidence it now knows about, given BELx(z): Ax — R
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TABLE I
INITIALIZATION RULES FOR PEARL’'S ALGORITHM

quantity (at X) initially (evid.) initially (non. evid.)
(CK = (EQ)

1. wx (u) —— _
2. Ax(z) —— —_

* p(z)* if X is a source node
3 mx(z) 8z, z0) { ——  otherwise
4. vx (u) plxolu) 1

- p(z) if X is a source node
- BELx (z) 8@, zo) { ——  otherwise
6. Axu(u) plzolu)* fM=1 1

’ —— otherwise
_ Sz za)* p(x) if X is a source node

! ™ (2) (i, o) { ——  otherwise

*Once initialized, these quantities never change.

The quantitiespx (u), Ax(z), 7x(x), and yx(u) have no TABLE IIl
particular intrinsic significance, but the quantBEL x (a:) is PEARL’S ALGORITHM APPLIED TO THE BELIEF NETWORK OF FIG. 7

. . . . (Nobes ARE ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN)
the heart of the algorithm since, when the algorithm termi-
nates,BELx (x) gives the value of the desired conditional
probability Pr{X = z|£}.

Here, then, is a complete description of Pearlg™itvated BBy  mux  mwxe Aau Aau
algorithm. When the nodeX is activated, it “reads” itS (initial conditions) 1 1
incoming messagesrg; (u) and Ay . (z), and updates )l(] aA ad aA ’21)
[20'¢ (’U,), Ax (37), X (.’17), 5.4 (’U,), BELx (37), AXl]('u') and U1 a A ” a AV W” ”
7y (z), in that order, using the update rules in Table | and X, » » e
the initial values given in Table Il. (In Table I, we use the U a An@a) @ ax® i
notation (v) = vyvy v, if v = (v1,---,v,) iS @ vector X ; i @

. . a Arn® g K a An® » ”
of real numbers.) A node can be activated only if all of ) ) i )

its incoming messages exist. Otherwise, the order of node

activation is arbitrary. Pearl proved that if the DAG is a

tree, then after a number of iterations at most equal to the

diameter of the tree, each node will have correctly computétformation symbolst will be

its .“belief,“ i.e..{ the probability of th_e assopiated random ad, aAr V@ Ar@ D qAx®g@ ...

variable, conditioned on all of the evidence in the tree, and

no further changes in the beliefs will occur. If the network i agreement with (3.8).

not a tree, the algorithm has no definite termination point, butLet us now verify the entries in Table IIl. First, we discuss

in practice, the termination rule chosen is either to stop aftdre necessary initializations. Becausgis a source node (i.e.,

a predetermined number of iterations, or else to stop whi#rhas no parents), and since we are assuming that the prior

the computed beliefs cease to change significantly. distribution on thel/;’s is independent and uniform, by line 3
in Table Il, the quantityry, (w;) is permanently set as follows:

VI. TURBO DECODING AS AN INSTANCE OF BP

In this section, we will show formally that if Pearl's BP
algorithm is applied to the belief network of Fig. 7, the resuféince theY;’s are “direct evidence” nodes (i.e., evidence
is an algorithm which is identical to the “turbo decoding’nodes which have only one parent), by line 6 of Table II, the
algorithm described in Section Ill. More precisely, we wilmessage that; sends thé/; is permanently set as follows:
show that if the n_etwork of Fig. 7 is initialized using the ruIe{s Ao () = p(ysilus) = Ni(wi)  (permanent  (6.2)
of Table Il, and if the nodes are updated (using Table I) in
the ordel/, X1,U, X5,U, X1, -, the results are summarizedSince the nodes(; and X, are not evidence nodes, by line
in Table Ill. In particular, the sequence of “beliefs” in thes of Table Il, the messages that they send to th& are

7, (u;) = a1l  (permanent (6.1)
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initially set as follows: TABLE IV
PEARL'S ALGORITHM APPLIED IN A SLIGHTLY DIFFERENT
Ax; v (u;) =1 (temporary (6.3) Way To THE BELIEF NETWORK OF FiG. 7 (NODES ARE

which appears (in vector notation) in line 1 of Table III. ACTIVATED IN THE ORDER SHOWN IN THE FIRST COLUMN)

Now, we simultaneously activate the nod&s,-- -, Us.
Since U; is a source node, it is not necessary to evaluatede activated BELy TUX, TUX; AX, U AX,U
wu,, YU, or the A messages. By line 2 of Table |

(initially) 1 1
Av (1:) = Ay, v () - Axyu () - Ax,u, (i) (6.4) U a ad  aA no
X1, X2 4 ? ? P ey) 7
=X(w;)-1-1 [by (6.2) and (6.3) U AT UFD  aaz D o ar® . .
= )\Z(U,Z) (6.5) X1, X, ” » » @) @
imi i U o A‘)‘r(2)7’?<2) o A‘n’<2) o A%(?) ” 19
Similarly, by line 5 of Table | i ) X
BELy, (ui) = ey, (wi) - 7o, (us) (6.6)
=aX(u;)-1 [by (6.1) and (6.9)
= aX;(u;). 6.7 o _ o _
) “ (1% ) _ ©.7) Similarly, using the definition (6.6), and the previous values
In vector notation, (6.7) is equivalent to in (6.4) and (6.1)
BEL = oA

_ o BEL; (u;) = cok(ui)m™ (us)
which appears in line 2 of Table Il
The messagé#’; sends taX; is, according to line 7, Table | which, in vector notation, is

T, x (W) = amy, (W) - Ay, v (wi) - Ax, v, () (6.8) BELy = ar(V
=al-A(u;) -1 [by (6.1), (6.2), (6.3) — D@
for i = 1,---, k. In vector notation, (6.9) becomes in agreement with line 4 of Table Ill.
Next, we updater; X, and ngy X
T x, = aA (6.10) ’ ’
which also appears in line 2 of Table II. A similar calculation™Vi-*1 (ui) = amy, (ui) - Av,, v, (ui) - Axy,v, (wi) - [by (6.8)
givesmyy . = X, which again appears in line 2 of Table IIl. =al-Ai(u;) -1 [by (6.1), (6.2), (6.3
Next, we updateX;. The quantitiesuy, (u), BELx, (1), =N (u;) (6.15)

and Ty, [y are not required since we do not update the
evidence nodeY;. Since Y; is an evidence node, by lineand

6, Table Il, the messag®y, x, (x1) is permanently fixed as N N 3. T
p(y1|z1). Thus, by line 2, Table IAx, (x1) is also fixed U, X, (i) = o, (i) )\Ysél,gi(uz) ;\Xl,éil(uz)G 2[“k96(6-8)]
Ax, (1) = plnler) (permanent  (611) ot dbu) )by (64, (62). (64

=ai(ug) -7 (). 6.16
Next, we computeyx, (u), using line 4 of Table I: adiua) - 7 ) ( )
_ The values (6.15) and (6.16) are the ones given in line 4 of
u) = x r1|uw).
0 () ;p(yll Dp(aal) Table lIl. It is now a matter of routine to verify that the rest

of the values given in Table IIl are correct.

The order in which we chose to update the nodes in
Fig. 7 was arbitrary, and other orders give different algo-
rithms. For example, it is easy to verify that the update

Since X; is a deterministic function ofJ, if follows that
p(z1]u) is equal to 1 for that value of that produces the
code fragmentry, i.e.,

vx, (u) = plyi|i (w)) orderU,X,U, X, .- yields the results in Table IV, where
=pi(w) (permanent (6.12) the sequences™ and#t("™) are defined by
where in 6.12 we have used the definition (3.5). Finally, we 7@ =7 = (a1, ,a1)

update the messagezg(hU, using line 6 of Table |

AXl,U :7([]7)(1 o ¥x, and

=adop; [by (6.10) and (6.12) my _ J axn(™=Dop, if mis odd
" = 1 . . (6.17)
=a(M@op)) [by (3.6) aAr™= 1 oy, if m is even

=@ |by (3.7) (6.13) 5 = { axp!" Vopy, if miseven (g q

~(m—1) ; R
which appears in line 3 of Table Il aAp °pz, if mis odd.

Now, we updatd/ again, using the definition (6.4), and thdt would be interesting to experiment with this alternative ver-
previous values given in (6.2), (6.13), and (6.3) sion of the turbo decoding algorithm. (This “parallel update”
rule is, in fact, the rule used to derived the decoding algorithm

Ao (i) = Ni(ug)m @ (). (6.14) for multiple turbo codes, as discussed in Section VII.)
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Ys1 Ys2 Ysk - . . .
Noisy information bits Noisy codeword
(visible) (visible)
Uk Information bits Xn Codeword
(hidden) (hidden)
Codeword Fragments Syndrome
(hidden) (must be all
ZEeros)
Noisy codeword Fig. 10. Belief network for decoding a Gallager “low-density parity-check”
Fragments code.
(visible)

Fig. 9. Belief network appropriate for decoding a “multiple” turbo code, in

which there arelM/ code fragments. Noisy information bits

(visible)

VIl. OTHER DECODING ALGORITHMS

DERIVED FROM BELIEF PROPAGATION Information bits

(hidden)
As we have seen in Sections IV and V, Pearl's algorithm
can be applied to any belief network, not just to one like Fig. 7. Ch .
. . . , . . eck bits
It is a fruitful exercise to apply Pearl’s algorithm to the belief (hidden)
networks of a variety of hybrid coding schemes, to see what
results. In this section, we will briefly outline (without proofs) Noi .
oisy check bits

what we have discovered along these lines. (visible)

e Multiple Turbo CodesAs we have defined them, turbo ) ) ) )

- . . . Fig. 11. Belief network for decoding systematic, low-density generator

codes involve only two encodings of the information, as;iix codes.
shown in Fig. 2. However, several researchers (e.g., [19]) have
experimented with three or more parallel encodings. If there
are M parallel encodings, the appropriate belief network isystematic linear block codes with low-densigenerator
as shown in Fig. 9. Applying the BP algorithm to this beliematrices[13]. (This same class of codes appeared earlier in
network, with the update ordd¥, X,U, X, ---, we obtain a a paper by MacKay [36] in a study of modulo-2 arithmetic
generalized turbo decoding algorithm which is identical to thiaference problems, and in a paper by by Spielman [60] in
one employed successfully in [19]. connection with “error reduction.”) The decoding algorithm

e Gallager's Low-Density Parity-Check Codelhe earliest devised by Cheng and McEliece was adapted from the one
suboptimal iterative decoding algorithm is that of Gallagedescribed in the MacKay—Neal paper cited above, and the
who devised it as a method of decoding his “low-densitsesults were quite good, especially at high rates. More recently,
parity-check” codes [25], [26]. This algorithm was later gencheng [14], [15] used some of these same ideas to construct
eralized and elaborated upon by Tanner [61] and Wibeegclass of block codes which yield some remarkably efficient
[67]. But as MacKay and Neal [37]-[39] have pointed outnultilevel coded modulations. Fig. 11 shows the belief net-
in the first citation of belief propagation by coding theowork for low-density generator matrix codes used by McEliece
rists, Gallager's algorithm is a special kind of BP, wittand Cheng.
Fig. 10 as the appropriate belief network. [In Fig. 10, = e Serially Concatenated CodedVe have defined a turbo
(X1,---,X,) is a codeword which satisfies the parity-checkode to be the parallel concatenation of two or more com-
equationsHX = 0. Y = (Y1, ---,Y,) is a noisy version ponents codes. However, as originally defined by Forney
of X. The “syndrome”S = (S51,---,5,) is defined as [22], concatenation is &erial operation. Recently, several
S = HX, which is perpetually “observed” to b@,---,0)]. researchers [8], [9] have investigated the performance of
Although LDPC codes had largely been forgotten by coderially concatenated codes, with turbo-style decoding. This
ing theorists until their rediscovery by MacKay and Neals a nontrivial variation on the original turbo decoding idea,
simulations of Gallager’s original decoding algorithm madand the iterative decoding algorithms in [8] and [9] differ so
with powerful modern computers show that their performanaggnificantly from the original Berroat al. algorithm that they
is remarkably good, in many cases rivaling that of turbmust be considered an original invention. Still, these decoding
codes. More recently, Sipser and Spielman [57], [60] hawtgorithms can be derived routinely from a BP viewpoint,
replaced the “random” parity-check martrices of Gallager anging the network of Fig. 12. Herd] is the information to
MacKay—Neal with deterministic parity-check matrices witbe encodedX is the outer (first) encodingy” is the inner
desirable properties, based on “expander” graphs, and h#ésecond) encoding, anX is the noisy version oY .
obtained even stronger results. e Product Codes:A number of researchers have been

e Low-Density Generator Matrix Code®Recently, Cheng successful with turbo-style decoding of product codes in two or
and McEliece have experimented with BP decoding on certaimore dimensions [46], [48], [54], [27]. In a product code, the
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Information bits

(hidden) ® ® ® ® ®

Outer codeword
Xn (hidden) ¢
P

S0=Ss5,51)y (S1.5p (52, 83) (33,S4) (84,55 F50)

Inner codeword
(hidden)

X] ' X2 v X3 ' X4 ' XS v
Noisy inner codeword
(visible)

Z

Fig. 12. Belief network for decoding a pair of serially concatenated codes.

\/ \/ \/ v \/
Y1 Yo Y3 Yq Ys
information is arranged in ai/-dimensional array, and then _ _ _ _— _ _
. . . Fig. 13. Belief network for decoding a tail-biting convolutional code, illus-
encoded separately in each dimension. Thus, the approprigd o a truncation length o = 5.
belief network is like the ones in Figs. 7 and 9 (a product

code, is, by definition, systematic). We have experimented o ) _
with “BP” decoding of product codes, and obtained resyl@aph of a tail-biting code with good success, and functionally,

similar to those in the cited references. However, in this caBeSe two approaches yield virtually identical algorithms.
it appears that the BP algorithms differ in some small detafi®ney [24] has also discussed the iterative decoding of tail-
from turbo-style decoding, and we are currently investigatirjting codes using the Tanner—Wiberg approach.
this phenomenon.

¢ “Tail-Biting” Convolutional Codes: The class of “tail- VIII. CONCLUDING REMARKS

biting” convolutional codes introduced by Solomon and van \we have shown that Pearl’s algorithm provides a systematic
Tilborg [56] is a natural candidate for BP decoding. Brieflymethod for devising low-complexity, suboptimal iterative de-
a tail-biting convolutional code is a block code formed byoding algorithms for a wide variety of error-control systems.
truncating the trellis of a conventional convolutional code aWIthough there is as yet no guarantee that these algorithms will
then pasting the ends of the trellis together. If the paregi/e useful results, the great body of experimental work done
convolutional code is arin, k) code, and if the truncation jn the “turbo-code” literature suggests that the performance is
depth isV, the resulting tail-biting code is aVn, Nk) block  |ikely to be very good.
code. One of the most interesting historical aspects of the turbo de-
In Fig. 13, we show a belief diagram for a tail-biting cododing problem is how often in the past inventors of decoding
where the truncation depth I¥ = 5. Assuming as above that a|gorithms have hit upon a “BP”-like algorithm. The earliest,
the parent convolutional code is ém, k) code, thenin Fig. 13, aimost clairvoyant, occurrence is in the papers of Gallager
the U;'s are k-bit information words, and the(;’s aren-bit [25] [26]. Later, Tanner [61], realizing the importance of
codeword segments. The's are the observed noisy versionszallager's construction, made an important generalization of
of the X;'s. The nodes intermediate between the informatiggw-density parity check codes, and of Gallager's iterative
words and the codeword segments are pairs of encoder staj@goding algorithm. With hindsight, especially in view of
For a given encoder state pdif;_»,5;—1) and information the recent work of Wiberg [67], it is now evident that both
word U;, the encoder rules (deterministically) produce the nexjterbi's algorithm [64], [23] and the BCJR algorithm [4] can
pair of codeword state$S;—1,S;) and the next codeword pe viewed as a kind of belief propagation. Indeed, Wiberg
segmentX;. If it were not for the “tail-biting” edge from [66], [67] has generalized Gallager's algorithm still further,
(Sn—1,55) t0 (S, So), this belief net would be without loopstg the point that it now resembles Pearl’s algorithm very
and would represent an ordinary convolutional code. If, thegiosely. (In particular, Wiberg shows that his algorithm can
the BP algorithm were applied, the result would be identicge adapted to produce both the Gallager—Tanner algorithm
to the BCJR APP decoding algorithit. and the turbo decoding algorithm.) Finally, having noticed the
If we were to apply Pearl’s algorithm to the belief diagrangimilarity between the Gallager—Tanner—Wiberg algorithm and
of Fig. 13, we would obtain an iterative decoding algorithm fopear|'s algorithm, Aji and McEliece [1], [2], relying heavily
the tail-biting code. To our knowledge, no one has done exacly the post-Pearl improvements and simplifications in the BP
that, but Wiberg [67] has applied his algorithm to the Tanngjigorithm [29], [30], [52], [58], [59] have devised a simple
algorithm for distributing information on a graph that is a

101n this connection, we should note that Wiberg [67] has observed that It lizati f both algorith d which
his algorithm, when applied to a Tanner graph similar to Fig. 13 (less grmultaneous generalization of both algorithms, and whnic

tail-biting edge), also implies the BCJR algorithm. The “min-sum” formincludes several other classic algorithms, including Viterbi's
of Wiberg's algorithm, when applied to the same graph, is closely relateflgorithm (which is already subsumed by Wiberg’s algorithm

to Viterbi's algorithm. Incidentally, there is a “min-sum” version of Pearl's. ~, . " g d the FET. It i t [t dict
algorithm described in [44, Ch. 5], called “belief revision,” which does thd1 MiN-sum Orm) an € : IS natural to predic

same thing. that this algorithm or one of its close relatives will soon
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become a standard tool for scientists in communications, sigie]
processing, and related fields. [14]
We conclude with our view of “why” turbo coding is so
successful. We believe that there are two, separable, esseritl
contributing factors. 16]
First: The presence of the pseudorandom interleavers k;e—
tween the component codes ensures that the resulting overall
code behaves very much like a long random code, and 537
Shannon’s theorems, a long random code is likely to be “good”
in the sense of having the potential, with optimal decoding}8l
to achieve performance near channel capacity. But optin}?,:l,]
decoding would be impossibly complex. This brings us to the
second essential factor. [20]
Second: We believe that there are general undiscovered the-
orems about the performance of belief propagation algorithms;]
on loopy DAG’s. These theorems, which may have nothin
directly to do with coding or decoding, will show that in som
sense BP “converges with high probability to a near-optimurms]
value” of the desired belief on a class of loopy DAG's th
includes most or all of the diagrams in Figs. 7, 9, and 10—?%4]
of this paper. If such theorems exist, they will no doubt fings]

applications in realms far beyond information theory. [26]
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