Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Outline

Outline:

• Density estimation:
 – Maximum likelihood (ML)
 – Bayesian parameter estimates
 – MAP
• Bernoulli distribution
• Binomial distribution
• Multinomial distribution
• Normal distribution
Density estimation

Density estimation: is an unsupervised learning problem

- **Goal**: Learn relations among attributes in the data

Data: $D = \{D_1, D_2, \ldots, D_n\}$

- $D_i = x_i$ a vector of attribute values

Attributes:

- modeled by random variables $X = \{X_1, X_2, \ldots, X_d\}$ with
 - Continuous or discrete valued variables

Density estimation: learn the underlying probability distribution: $p(X) = p(X_1, X_2, \ldots, X_d)$ from D

Density estimation

Data: $D = \{D_1, D_2, \ldots, D_n\}$

- $D_i = x_i$ a vector of attribute values

Objective: estimate the underlying probability distribution over variables X, $p(X)$, using examples in D

true distribution $p(X)$ \[\xrightarrow{\text{n samples}} \] n samples $D = \{D_1, D_2, \ldots, D_n\}$ \[\xrightarrow{\text{estimate}} \] estimate $\hat{p}(X)$

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(X)$)

CS 2750 Machine Learning
Density estimation

Types of density estimation:

Parametric
- the distribution is modeled using a set of parameters Θ
 \[p(X | Θ) \]
- **Example**: mean and covariances of a multivariate normal
- **Estimation**: find parameters Θ describing data D

Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- **Examples**: Nearest-neighbor

Learning via parameter estimation

In this lecture we consider **parametric density estimation**

Basic settings:
- A set of random variables \(X = \{X_1, X_2, \ldots, X_d\} \)
- **A model of the distribution** over variables in \(X \)
 with parameters \(Θ : \hat{p}(X | Θ) \)

- **Data** \(D = \{D_1, D_2, \ldots, D_n\} \)

Objective: find parameters Θ such that \(p(X | Θ) \) fits data D the best
Parameter estimation

- **Maximum likelihood (ML)**

 \[
 \text{maximize } p(D \mid \Theta, \xi) \\
 \text{yields: one set of parameters } \Theta_{ML} \\
 \text{the target distribution is approximated as: } \\
 \hat{p}(X) = p(X \mid \Theta_{ML})
 \]

- **Bayesian parameter estimation**

 - uses the posterior distribution over possible parameters
 \[
 p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
 \]
 - Yields: all possible settings of \(\Theta\) (and their “weights”)
 - The target distribution is approximated as:
 \[
 \hat{p}(X) = p(X \mid D) = \int p(X \mid \Theta) p(\Theta \mid D, \xi) d\Theta
 \]

Other possible criteria:

- **Maximum a posteriori probability (MAP)**

 \[
 \text{maximize } p(\Theta \mid D, \xi) \quad \text{(mode of the posterior)}
 \]
 - Yields: one set of parameters \(\Theta_{MAP}\)
 - Approximation:
 \[
 \hat{p}(X) = p(X \mid \Theta_{MAP})
 \]

- **Expected value of the parameter**

 \[
 \hat{\Theta} = E(\Theta) \quad \text{(mean of the posterior)}
 \]
 - Expectation taken with regard to posterior \(p(\Theta \mid D, \xi)\)
 - Yields: one set of parameters
 - Approximation:
 \[
 \hat{p}(X) = p(X \mid \hat{\Theta})
 \]
Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D -- a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Objective:
We would like to estimate the probability of a head $\hat{\theta}$ from data

Parameter estimation. Example.

- **Assume** the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**

<table>
<thead>
<tr>
<th>Heads</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>H</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>T</td>
</tr>
</tbody>
</table>

- **Heads:** 15
- **Tails:** 10

What would be your estimate of the probability of a head?

$\hat{\theta} = ?$
Parameter estimation. Example

- **Assume** the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**
 H H T T H T H T T H T H H H T H H H T H H H T H
 - **Heads:** 15
 - **Tails:** 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

\[
\tilde{\theta} = \frac{15}{25} = 0.6
\]

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
 probability of a tail $(1-\theta)$

Assume: we know the probability θ

Probability of an outcome of a coin flip x_i

\[
P(x_i \mid \theta) = \theta^{x_i} (1-\theta)^{1-x_i} \quad \text{Bernoulli distribution}
\]

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ
probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips $D = H H T H T H$ (encoded as $D= 110101$)

What is the probability of observing the data sequence D: $P(D | \theta) =$?
Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that
- **head** $x_i = 1$
- **tail** $x_i = 0$

Model: probability of a head θ
probability of a tail $(1 - \theta)$

Assume: a sequence of coin flips $D = \text{H H T H T H}$ encoded as $D = 110101$

What is the probability of observing a data sequence D:

$$P(D \mid \theta) = \theta \theta (1 - \theta) \theta (1 - \theta) \theta$$

likelihood of the data
The goodness of fit to the data

Learning: we do not know the value of the parameter θ

Our learning goal:
- Find the parameter θ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Intuition:
- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D, \theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} =$$

$$\sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta)$$

$$= \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i)$$

N_1 - number of heads seen N_2 - number of tails seen
Maximum likelihood (ML) estimate.

Optimize log-likelihood
\[l(D, \theta) = N_1 \log \theta + N_2 \log(1 - \theta) \]

Set derivative to zero
\[\frac{\partial l(D, \theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1 - \theta)} = 0 \]

Solving
\[\theta = \frac{N_1}{N_1 + N_2} \]

ML Solution: \[\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} \]

Maximum likelihood estimate. Example

- **Assume** the unknown and possibly biased coin
- Probability of the head is \(\theta \)
- **Data:**

 H H T T H H T H T H T T H T H H H T H H H T H T

 – **Heads:** 15

 – **Tails:** 10

What is the ML estimate of the probability of a head and a tail?
Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- **Data:**
 - Heads: 15
 - Tails: 10

What is the ML estimate of the probability of head and tail?

Head:

$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$

Tail:

$$(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$$

Maximum a posteriori estimate

Maximum a posteriori estimate
- Selects the mode of the **posterior distribution**

$$\theta_{MAP} = \arg \max_\theta p(\theta \mid D, \xi)$$

Likelihood of data

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)}$$

(via Bayes rule)

Normalizing factor

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i}(1 - \theta)^{(1-x_i)} = \theta^{N_1}(1 - \theta)^{N_2}$$

$p(\theta \mid \xi)$ - is the prior probability on θ

How to choose the prior probability?
Prior distribution

Choice of prior: **Beta distribution**

\[p(\theta \mid \xi) = \text{Beta}(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1-1}(1-\theta)^{\alpha_2-1} \]

\[\Gamma(x) \text{ - a Gamma function, } \Gamma(x) = (x-1)\Gamma(x-1) \]

For integer values of x \(\Gamma(n) = (n-1)! \)

Why to use Beta distribution?

Beta distribution “fits” Bernoulli trials - **conjugate choices**

\[P(D \mid \theta, \xi) = \theta^{N_1}(1-\theta)^{N_2} \]

Posterior distribution is again a Beta distribution

\[p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)\text{Beta}(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

Beta distribution

\[p(\theta \mid \xi) = \text{Beta}(\theta \mid a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \theta^{a-1}(1-\theta)^{b-1} \]

CS 2750 Machine Learning
Posterior distribution

\[
\begin{align*}
 &\text{prior} \quad \text{Beta} \\
 &\text{likelihood function} \\
 &\text{posterior} \quad \text{Beta}
\end{align*}
\]

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]

Maximum a posterior probability

Maximum a posteriori estimate
- Selects the mode of the **posterior distribution**

\[
p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) \beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = \beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)
\]

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as **prior counts**).

MAP Solution:
\[
\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}
\]

CS 2750 Machine Learning
MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is \(\theta \)
• Data:

 H H T T H H T H T T H T H T H T H H H T H H T H T

 – Heads: 15
 – Tails: 10
• Assume \(p(\theta | \xi) = \text{Beta}(\theta | 5,5) \)

What is the MAP estimate?

\[
\theta_{\text{MAP}} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}
\]
MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- The MAP can be biased with large prior counts
- It is hard to overturn it with a smaller sample size
- Data:

 H H T T H H T T H T H T H H H T H H H H T H H H H T

 - Heads: 15
 - Tails: 10

- Assume

 \[p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,5) \quad \theta_{\text{MAP}} = \frac{19}{33} \]

 \[p(\theta \mid \xi) = \text{Beta}(\theta \mid 5,20) \quad \theta_{\text{MAP}} = \frac{19}{48} \]

Bayesian framework

Both ML or MAP estimates pick one value of the parameter

- **Assume**: there are two different parameter settings that are close in terms of their probability values. Using only one of them may introduce a strong bias, if we use them, for example, for predictions.

Bayesian parameter estimate

- Remedies the limitation of one choice
- Keeps all possible parameter values
- Where
 \[p(\theta \mid D, \xi) \approx \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

- **The posterior can be used to define** \(p(A \mid D) \):

 \[p(A \mid D) = \int_0^\Theta p(A \mid \Theta) p(\Theta \mid D, \xi)d\Theta \]
Bayesian framework

- **Predictive probability of an outcome** $x = 1$ in the next trial

 $P(x = 1 \mid D, \xi)$

 Posterior density

 $$P(x = 1 \mid D, \xi) = \int_0^1 P(x = 1 \mid \theta, \xi) p(\theta \mid D, \xi) d\theta$$

 $$= \int_0^1 \theta p(\theta \mid D, \xi) d\theta = E(\theta)$$

- **Equivalent to the expected value of the parameter**
 - expectation is taken with respect to the posterior distribution

 $$p(\theta \mid D, \xi) = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$

Expected value of the parameter

How to obtain the expected value?

$$E(\theta) = \int_0^1 \theta \text{Beta}(\theta \mid \eta_1, \eta_2) d\theta = \int_0^1 \theta \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1)\Gamma(\eta_2)} \theta^{\eta_1 - 1} (1 - \theta)^{\eta_2 - 1} d\theta$$

$$= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1)\Gamma(\eta_2)} \int_0^1 \theta^{\eta_1} (1 - \theta)^{\eta_2 - 1} d\theta$$

$$= \frac{\Gamma(\eta_1 + \eta_2)}{\Gamma(\eta_1)\Gamma(\eta_2)} \frac{\Gamma(\eta_1 + 1)\Gamma(\eta_2)}{\Gamma(\eta_1 + \eta_2 + 1)} \int_0^1 \text{Beta}(\eta_1 + 1, \eta_2) d\theta$$

$$= \frac{\eta_1}{\eta_1 + \eta_2}$$

Note: $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$ for integer values of α
Expected value of the parameter

• **Substituting the results for the posterior:**

\[p(\theta \mid D, \xi) = \text{Beta}(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2) \]

• We get

\[E(\theta) = \frac{\alpha_1 + N_1}{\alpha_1 + N_1 + \alpha_2 + N_2} \]

• **Note that the mean of the posterior is yet another**
 “reasonable” parameter choice:

\[\hat{\theta} = E(\theta) \]