Dimensionality reduction
Feature selection

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Dimensionality reduction. Motivation.

• Is there a lower dimensional representation of the data that captures well its characteristics?
• Assume:
 – We have an data \{x_1, x_2, \ldots, x_N\} such that
 \[x_i = (x_i^1, x_i^2, \ldots, x_i^d) \]
 – Assume the dimension \(d\) of the data point \(x\) is very large
 – We want to analyze \(x\)
• Methods of analysis are sensitive to the dimensionality \(d\)
• Our goal: Find a lower dimensional representation of data
• Two learning problems:
 – supervised
 – unsupervised
Dimensionality reduction for classification

- **Classification problem example:**
 - We have an input data \(\{x_1, x_2, \ldots, x_N\} \) such that \(x_i = (x_i^1, x_i^2, \ldots, x_i^d) \) and a set of corresponding output labels \(\{y_1, y_2, \ldots, y_N\} \)
 - Assume the dimension \(d \) of the data point \(x \) is very large
 - We want to classify \(x \)

- **Problems with high dimensional input vectors**
 - A large number of parameters to learn, if a dataset is small this can result in:
 - Large variance of estimates and overfit
 - It becomes hard to explain what features are important in the model (too many choices some can be substitutable)

Dimensionality reduction

- **Solutions:**
 - **Selection of a smaller subset** of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - **Combination of high dimensional inputs** to a smaller set of features \(\phi_k(x) \); train classifier on new features

CS 2750 Machine Learning
Feature selection

How to find a good subset of inputs/features?
• We need:
 – A criterion for ranking good inputs/features
 – Search procedure for finding a good set of features
• Feature selection process can be:
 – Dependent on the learning task
 • e.g. classification
 • Selection of features affected by what we want to predict
 – Independent of the learning task
 • Unsupervised methods
 • may lack the accuracy for classification/regression tasks

Task-dependent feature selection

Assume:
• Classification problem:
 – x – input vector, y - output
Objective: Find a subset of inputs/features that gives/preserves most of the output prediction capabilities
Selection approaches:
• Filtering approaches
 – Filter out features with small predictive potential
 – done before classification; typically uses univariate analysis
• Wrapper approaches
 – Select features that directly optimize the accuracy of the multivariate classifier
• Embedded methods
 – Feature selection and learning closely tied in the method
Feature selection through filtering

- **Assume:**
 - **Classification problem:** x – input vector, y - output
 - Inputs in x or some fixed feature mappings $\phi_k(x)$

- **How to select the feature:**
 - **Univariate analysis**
 - Pretend that only one variable, x_k, exists
 - See how well it predicts the output y alone
 - **Example:**
 - differentially expressed features (or inputs)
 - Good separation in binary (case/control settings)

Differentially expressed features

- **Scores for measuring the differential expression**
 - **T-Test score** (Baldi & Long)
 - Based on the test that two groups come from the same population
 - **Fisher Score**
 $$Fisher(i) = \frac{\mu_i^{(+)} - \mu_i^{(-)}}{\sigma_i^{(+)} + \sigma_i^{(-)}}$$
 - **AUROC score**: Area under Receiver Operating Characteristic curve

Problems:
- if many random features, and not many instances we can learn from the features with a good differentially expressed score must arise
 - Techniques to reduce **FDR** (False discovery rate) and **FWER** (Family wise error).
Feature filtering

Other univariate scores:
- **Correlation coefficients**
 \[\rho(\phi_k, y) = \frac{\text{Cov}(\phi_k, y)}{\sqrt{\text{Var}(\phi_k)\text{Var}(y)}} \]
 - Measures **linear dependences**
- **Mutual information**
 \[I(\phi_k, y) = \sum_i \sum_j \tilde{P}(\phi_k = j, y = i) \log_2 \frac{\tilde{P}(\phi_k = j, y = i)}{\tilde{P}(\phi_k = j)\tilde{P}(y = i)} \]
- **Univariate assumptions:**
 - Only one feature and its effect on \(y \) is incorporated in the mutual information score
 - Effects of two features on \(y \) are independent
- What to do if the combination of features gives the best prediction?

Feature selection: dependent features

Filtering with dependent features
- Let \(\Phi \) be a current set of features (starting from complete set)
- We can remove feature \(\phi_k(x) \) from it when:
 \[\tilde{P}(y | \Phi \setminus \phi_k) \approx \tilde{P}(y | \Phi) \quad \text{for all values of } \phi_k, y \]
- Repeat removals until the probabilities differ.

Problem: how to compute/estimate \(\tilde{P}(y | \Phi \setminus \phi_k) \), \(\tilde{P}(y | \Phi) \)?

Solution: make some simplifying assumption about the underlying probabilistic model
- **Example:** use a Naïve Bayes
- **Advantage:** speed, modularity, applied before classification
- **Disadvantage:** may not be as accurate
Feature selection: wrappers

Wrapper approach:
- The feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to build

How to find the appropriate feature set?
- **For d binary features there are** 2^d **different feature subsets**
- **Idea: Greedy search in the space of classifiers**
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- **Standard way to measure the quality:**
 - Internal cross-validation (m-fold cross validation)

Internal cross-validation

- **Split train set:** to internal train and test sets
- **Internal train set:** train different models (defined e.g. on different subsets of features)
- **Internal test set/s:** estimate the generalization error and select the best model among possible models
- **Internal cross-validation (m-fold):**
 - Divide the train data into m equal partitions (of size N/m)
 - Hold out one partition for validation, train the classifiers on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of on all partitions
Feature selection: wrappers

- **Greedy (forward) search:**
 - logistic regression model with features

 Start with \(p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_o) \)

 Choose feature \(x_i \) with the best error (in the internal step)
 \(p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_o + w_i x_i) \)

 Choose feature \(x_j \) with the best error (in the internal step)
 \(p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_o + w_i x_i + w_j x_j) \)

 Etc.

 Goal: Stop adding features when the error on the data stops descreasing

Embedded methods

- **Feature selection + classification model learning** done together
- **Embedded models:**
 - **Regularized models**
 - Models of higher complexity are explicitly penalized leading to ‘virtual’ removal of inputs from the model
 - Regularized logistic/linear regression
 - **Support vector machines**
 - Optimization of margins penalizes nonzero weights
 - **CART/Decision trees**
Dimensionality reduction

- Is there a lower dimensional representation of the data that captures well its characteristics?

- Assume:
 - We have an data \(\{x_1, x_2, \ldots, x_N\} \) such that
 \[x_i = (x_{i1}, x_{i2}, \ldots, x_{id}) \]
 - Assume the dimension \(d \) of the data point \(x \) is very large
 - We want to analyze \(x \)

- Methods of analysis are sensitive to the dimensionality \(d \)

- Our goal:
 - Find a lower dimensional representation of data of dimension \(d' < d \)

Principal component analysis (PCA)

- **Objective:** We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
 - Different from the feature subset selection !!!

- **PCA:**
 - A linear transformation of \(d \) dimensional input \(x \) to \(M \) dimensional feature vector \(z \) such that \(M < d \) under which the retained variance is maximal.
 - Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.
$X_{prim} = 0.04x + 0.06y - 0.99z$

$Y_{prim} = 0.70x + 0.70y + 0.07z$

97% variance retained
Principal component analysis (PCA)

- **PCA:**
 - linear transformation of a d dimensional input x to M dimensional vector z such that $M < d$ under which the retained variance is maximal.
 - Task independent
- **Fact:**
 - A vector x can be represented using a set of orthonormal vectors u
 \[x = \sum_{i=1}^{d} z_i u_i \]
 - Leads to transformation of coordinates (from x to z using u's)
 \[z_i = u_i^T x \]

PCA

- **Idea:** replace d coordinates with M of z_i coordinates to represent x. We want to find the subset M of basis vectors.
 \[\tilde{x} = \sum_{i=1}^{M} z_i u_i + \sum_{i=M+1}^{d} b_i u_i \]
 - b_i - constant and fixed
- **How to choose the best set of basis vectors?**
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)
 \[x^n - \tilde{x}^n = \sum_{i=M+1}^{d} z_i^n - b_i \]
 Error for data entry
 \[E_M = \frac{1}{2} \sum_{n=1}^{N} \| x^n - \tilde{x}^n \|^2 = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_i^n - b_i)^2 \]
PCA

• **Differentiate the error function** with regard to all b_i and set equal to 0 we get:

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n u_i^T \bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_i^n$$

• Then we can rewrite:

$$E_M = \frac{1}{2} \sum_{i=M+1}^{d} u_i^T \Sigma u_i \quad \Sigma = \sum_{n=1}^{N} (x_i^n - \bar{x})(x_i^n - \bar{x})^T$$

• The error function is optimized when basis vectors satisfy:

$$\Sigma u_i = \lambda_i u_i \quad E_M = \frac{1}{2} \sum_{i=M+1}^{d} \lambda_i$$

The best M basis vectors: discard vectors with $d-M$ smallest eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector u_i – is called a **principal component**

PCA

• Once eigenvectors u_i with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions

![PCA Diagram]

• To find the “true” dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)

• **Problem**: PCA is a linear method. The “true” dimensionality can be overestimated. There can be non-linear correlations.

• **Modifications for nonlineairties**: kernel PCA
Dimensionality reduction with neural nets

- **PCA** is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- **Auto-associative (or auto-encoder) network:** a neural network with the same inputs and outputs (x)

![Network Diagram]

- The middle layer corresponds to the reduced dimensions

Dimensionality reduction with neural nets

- **Error criterion:**

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- **Non-linearities** modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning

![Network Diagram]
Latent variable models

Latent variables (s): Dimensionality k

Observed variables x: real valued vars
Dimensionality d

Model:
Latent var s_i: ~ Bernoulli distribution parameter: π_i

$P(s_i \mid \pi_i) = \pi_i^{s_i} (1 - \pi_i)^{1-s_i}$

Observable variables x:
~ Normal distribution parameters: W, Σ

$P(x \mid s) = N(Ws, \Sigma)$

We assume $\Sigma = \sigma I$

Joint for one instance of x and s:

$P(x,s \mid \Theta) = (2\pi)^{-d/2} \sigma^{-d/2} \exp\left\{ -\frac{1}{2\sigma^2} (x - Ws)^T (x - Ws) \right\} \prod_{i=1}^k \pi_i^{s_i} (1 - \pi_i)^{1-s_i}$
Other unsupervised methods

• **Factor analysis (a latent variable model)**
 • Decompose signal into multiple Gaussian sources

 \[x = As \quad \text{X is a linear combination of values for sources} \]

 \[s = Wx = A^{-1}x \]

• **Independent component analysis:**
 – Identify independent components/signals/sources in the original data
 – Non-Gaussian signals

 \[x = As \]

Multidimensional scaling

• Find a lower dimensional space projection such that the distances among data points are preserved

• Used in visualization – d-diminensional data transformed to 3D or 2D

• **Dissimilarities before projection** \(\delta_{i,j} = \|x_i - x_j\| \)

• **Objective:** Optimize points and their coordinates by fitting the dissimilarities afterwards

\[
\min_{\{x_1, x_2, \ldots, x_n\}} \sum_{i<j} \left(\|x_i' - x_j'\| - \delta_{ij} \right)^2
\]