Ensemble methods: Boosting

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Ensemble methods

Train and use multiple base models for either classification or regression problems

• Mixture of experts
 – each ‘base’ model (classifier, regressor) covers a different part (region) of the input space
 – All models are trained together on the same training data

• Committee machines:
 – each ‘base’ model (classifier, regressor) covers the complete input space
 – Each base model is trained on a slightly different train set
 – Combine predictions of all models to produce the output
 • Goal: Improve the accuracy of the ‘base’ model
 • Methods: Bagging, Boosting, Stacking (not covered)
Mixture of experts model

• **Ensamble methods:**
 - Use a combination of simpler learners/model to improve their predictions

• **Mixture of expert model:**
 - Different input regions covered with different learners
 - A “soft” switching between learners

• **Mixture of experts**
 Expert = learner

Mixture of experts model

• **Gating network**: decides what expert to use
 \(g_1, g_2, \ldots, g_k \) - gating functions

Bagging (Bootstrap Aggregating)

• **Given:**
 – Training set of \(N \) examples
 – A class of learning models (e.g. decision trees, neural networks, …)

• **Method:**
 – Train multiple (\(k \)) models on different samples (data splits) and average their predictions
 – Predict (test) by averaging the results of \(k \) models

• **Goal:**
 – Improve the accuracy of one model by using its multiple copies
 – Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method

Bagging algorithm

• **Training**
 – In each iteration \(t \), \(t=1,\ldots,T \)
 • Randomly sample with replacement \(N \) samples from the training set
 • Train a chosen “base model” (e.g. neural network, decision tree) on the samples

• **Test**
 – For each test example
 • Start all trained base models
 • Predict by combining results of all \(T \) trained models:
 – **Regression:** averaging
 – **Classification:** a majority vote
Analysis of Bagging

- **Expected error** = **Bias** + **Variance**
 - *Expected error* is the expected discrepancy between the estimated and true function
 \[E[(\hat{f}(X) - E[f(X)])^2] \]
 - *Bias* is squared discrepancy between averaged estimated and true function
 \[(E[\hat{f}(X)] - E[f(X)])^2 \]
 - *Variance* is expected divergence of the estimated function vs. its average value
 \[E[(\hat{f}(X) - E[\hat{f}(X)])^2] \]

Under-fitting and over-fitting

- **Under-fitting:**
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)

- **Over-fitting:**
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)
When Bagging works

- **Main property of Bagging** (proof omitted)
 - Bagging **decreases variance** of the base model without changing the bias!!!
 - Why? averaging!
- **Bagging typically helps**
 - When applied with an **over-fitted base model**
 - High dependency on actual training data
- **It does not help much**
 - High bias. When the base model is robust to the changes in the training data (due to sampling)

Boosting

- **Mixture of experts**
 - One expert per region
 - Expert switching
- **Bagging**
 - Multiple models on the complete space, a learner is not biased to any region
 - Learners are **learned independently**
- **Boosting**
 - Every learner covers the complete space
 - During training the learners are biased to regions not predicted well by other learners
 - **Learners are dependent**
Boosting. Theoretical foundations.

- **PAC**: Probably Approximately Correct framework
 - (ε-δ) solution
- **PAC learning**:
 - Learning with pre-specified error ε and confidence δ parameters
 - The probability that the misclassification error is larger than ε is smaller than δ

 $P(ME(c) > \varepsilon) \leq \delta$

- **Accuracy (1-ε)**: Percent of correctly classified samples in test
- **(1-δ)**: The probability that in one experiment some minimum accuracy will be achieved

 $P(\text{Acc}(c) > 1 - \varepsilon) > (1 - \delta)$

PAC Learnability

Strong (PAC) learnability:
- There exists a learning algorithm that efficiently learns the classification with a pre-specified accuracy and confidence

Strong (PAC) learner:
- A learning algorithm P that given an arbitrary
 - classification error ε ($< 1/2$), and
 - confidence parameter δ ($< 1/2$)
 - Outputs a classifier that satisfies this parameters
 - In other words the classifier gives:
 - classification accuracy $> (1-\varepsilon)$
 - confidence probability $> (1- \delta)$
 - And runs in time polynomial in $1/ \delta$, $1/\varepsilon$
 - Implies: number of samples N is polynomial in $1/ \delta$, $1/\varepsilon$
Weak Learner

Weak learner:
- A learning algorithm (learner) W that gives:
 - error $\varepsilon_0 (<1/2)$
 - confidence $\delta_0 (<1/2)$
 - For some fixed and uncontrollable ε_0, δ_0
 - In other words:
 - a classification accuracy $> 1 - \varepsilon_0 (> 1/2)$
 - with probability $> 1 - \delta_0 (> 1/2)$
 - and this on an arbitrary distribution of data entries

Weak learnability=Strong (PAC) learnability

- Assume there exists a weak learner
 - it is better that a random guess ($> 50\%$) with confidence higher than 50% on any data distribution
- **Question:**
 - Is the problem also PAC-learnable?
 - Can we generate an algorithm P that achieves an arbitrary (ε, δ) accuracy?
- **Why is important?**
 - Usual classification methods (decision trees, neural nets), have specified, but uncontrollable performances.
 - Can we improve performance to achieve any pre-specified accuracy (confidence)?
Weak=Strong learnability!!!

- Proof due to R. Schapire

 An arbitrary \((\varepsilon, \delta)\) improvement is possible

Idea: combine multiple weak learners together
- Weak learner \(W\) with confidence \(\delta_o\) and maximal error \(\varepsilon_o\)
- It is possible:
 - To improve (boost) the confidence
 - To improve (boost) the accuracy

by training the different weak learners on slightly different datasets and combining their results

Boosting accuracy

Training

Distribution samples

Learners

\(H_1\)

\(H_2\)

\(H_3\)

Correct classification
Wrong classification
\(H_1\) and \(H_2\) classify differently
Boosting accuracy

• **Training**
 – Sample randomly from the distribution of examples
 – Train hypothesis H_1 on the sample
 – Evaluate accuracy of H_1 on the distribution
 – Sample randomly such that for the half of samples H_1 provides correct, and for another half, incorrect results; Train hypothesis H_2.
 – Train H_3 on samples from the distribution where H_1 and H_2 classify differently

• **Test**
 – For each example, decide according to the majority vote of H_1, H_2 and H_3

Theorem

• If each hypothesis has an error $< \varepsilon_0$, the final ‘voting’ classifier has error $< g(\varepsilon_0) = 3\varepsilon_0^2 - 2\varepsilon_0^3$

• **Accuracy improved !!!!**

• **Apply recursively to get to the target accuracy !!!**

CS 2750 Machine Learning
Theoretical Boosting algorithm

- Similarly to boosting the accuracy we can boost the confidence at some restricted accuracy cost
- **The key result:** we can improve both the accuracy and confidence

- **Problems with the theoretical algorithm**
 - A good (better than 50%) classifier on all distributions and problems
 - We cannot get a good sample from data-distribution
 - The method requires a large training set

- **Solution to the sampling problem:**
 - Boosting by sampling
 - AdaBoost algorithm and variants

AdaBoost

- **AdaBoost:** boosting by sampling

- **Classification** (Freund, Schapire; 1996)
 - AdaBoost.M1 (two-class problem)
 - AdaBoost.M2 (multiple-class problem)

- **Regression** (Drucker; 1997)
 - AdaBoostR
AdaBoost

- **Given:**
 - A training set of \(N \) examples (attributes + class label pairs)
 - A “base” learning model (e.g. a decision tree, a neural network)

- **Training stage:**
 - Train a sequence of \(T \) “base” models on \(T \) different sampling distributions defined upon the training set (\(D \))
 - A sample distribution \(D_t \) for building the model \(t \) is constructed by modifying the sampling distribution \(D_{t-1} \) from the \((t-1)\)th step.
 - Examples classified incorrectly in the previous step receive higher weights in the new data (attempts to cover misclassified samples)

- **Application (classification) stage:**
 - Classify according to the **weighted majority** of classifiers

AdaBoost training

![AdaBoost training diagram]

- Distribution
- Learn
- Test
- \(D_1 \) → Model 1 → Errors 1
- \(D_2 \) → Model 2 → Errors 2
- \(\cdots \)
- \(D_T \) → Model T → Errors T

AdaBoost algorithm

Training (step t)

- **Sampling Distribution** D_t
 - $D_t(i)$ - a probability that example i from the original training dataset is selected
 - $D_t(i) = 1 / N$ for the first step ($t=1$)
- Take K samples from the training set according to D_t
- Train a classifier h_t on the samples
- Calculate the error ε_t of h_t: $\varepsilon_t = \sum_{i: h_t(x_i) \neq y_i} D_t(i)$
- Classifier weight: $\beta_t = \varepsilon_t / (1 - \varepsilon_t)$
- New sampling distribution $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} \beta_t & h_t(x_i) = y_i \\ 1 & \text{otherwise} \end{cases}$

AdaBoost. Sampling Probabilities

Example:
- Nonlinearly separable binary classification
- NN as weak learners
AdaBoost classification

- We have T different classifiers h_t.
 - Weight w_t of the classifier is proportional to its accuracy on the training set
 \[
 w_t = \log(1/\beta_t) = \log((1 - \epsilon_t)/\epsilon_t) \\
 \beta_t = \epsilon_t/(1 - \epsilon_t)
 \]

- **Classification:**
 For every class $j=0,1$
 - Compute the sum of weights w corresponding to ALL classifiers that predict class j;
 - Output class that correspond to the maximal sum of weights (weighted majority)
 \[
 h_{final}(x) = \arg\max_j \sum_{t:h_t(x)=j} w_t
 \]
Two-Class example. Classification.

- Classifier 1 “yes” 0.7
- Classifier 2 “no” 0.3
- Classifier 3 “no” 0.2

- Weighted majority “yes”
 \[0.7 - 0.5 = + 0.2 \]

- The final choose is “yes” + 1

What is boosting doing?

- Each classifier specializes on a particular subset of examples
- Algorithm is concentrating on “more and more difficult” examples

Boosting can:
 - Reduce variance (the same as Bagging)
 - But also to eliminate the effect of high bias of the weak learner (unlike Bagging)

Train versus test errors performance:
 - Train errors can be driven close to 0
 - But test errors do not show overfitting

- Proofs and theoretical explanations in **a number of papers**
Boosting. Error performances

CS 2750 Machine Learning