Ensemble methods:
• Mixture of experts
• Bagging

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Ensemble methods

Train and use multiple base models for either classification or regression problems
• Mixture of experts
 – each ‘base’ models (classifier, regressor) covers a different part (region) of the input space
 – All models are trained together on the same training data
• Committee machines:
 – each ‘base’ model (classifier, regressor) covers the complete input space
 – Each base model is trained on a slightly different train set
 – Combine predictions of all models to produce the output
 • Goal: Improve the accuracy of the ‘base’ model
 – Methods: Bagging, Boosting, Stacking (not covered)
Reviewing Decision trees

• An approach to classification that:
 – **Partitions the input space to regions**
 – **Classifies independently in every region**

Decision trees

• The partitioning idea is used in the **decision tree model**:
 – Split the space recursively according to inputs in \(x \)
 – Classify (assign class label) at the bottom of the tree

Example:
Binary classification \(\{0,1\} \)
Binary attributes \(x_1, x_2, x_3 \)
Decision tree learning

- **Greedy learning algorithm:**
 Repeat until no or small improvement in the purity
 - Find the attribute with the highest gain
 - Add the attribute to the tree and split the set accordingly

- Builds the tree in the top-down fashion
 - Gradually expands the leaves of the partially built tree
- The method is greedy
 - It looks at a single attribute and gain in each step
 - May fail when the combination of attributes is needed to improve the purity (parity functions)

Limitations of Decision trees

- **Greedy learning methods:** a combination of two or more attributes improves the impurity
- **Rectangular regions**

![Diagram](image-url)
Mixture of experts model

- **Ensemble methods:**
 - Use a combination of simpler learners/model to improve their predictions
- **Mixture of expert model:**
 - Different input regions covered with different learners
 - A “soft” switching between learners

- **Mixture of experts**
 - Expert = learner

 ![Diagram of Mixture of experts model]

- **Gating network**: decides what expert to use

 \[
g_1, g_2, \ldots, g_k \text{ - gating functions}
 \]
Learning mixture of experts

• **Learning consists of two tasks:**
 – Learn the parameters of individual expert networks
 – Learn the parameters of the gating (switching) network
• Decides where to make a split
• **Assume:** gating functions give probabilities
 \[0 \leq g_1(x), g_2(x), \ldots, g_k(x) \leq 1 \]
 \[\sum_{u=1}^{k} g_u(x) = 1 \]
• Based on the probability we partition the space
 – partitions belongs to different experts
• How to model the gating network?
 – **A multi-way classifier model:**
 • softmax model

Learning mixture of experts

• Assume we have a set of linear experts
 \[\mu_i = \Theta_i^T x \quad \text{(Note: bias terms are hidden in x)} \]
• Assume a softmax gating network
 \[g_i(x) = \frac{\exp(\eta_i^T x)}{\sum_{u=1}^{k} \exp(\eta_u^T x)} \approx p(\omega_i \mid x, \eta) \]
 \[\sum_{u=1}^{k} \exp(\eta_u^T x) \]
• Likelihood of \(y \) (linear regression – assume errors for different experts are normally distributed with the same variance)
 \[P(y \mid x, \Theta, \eta) = \sum_{i=1}^{k} P(\omega_i \mid x, \eta) p(y \mid x, \omega_i, \Theta) \]
 \[= \sum_{i=1}^{k} \left[\frac{\exp(\eta_i^T x)}{\sum_{j=1}^{k} \exp(\eta_j^T x)} \right] \frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{\|y - \mu\|^2}{2\sigma^2} \right) \]
Learning mixture of experts

Learning of parameters of expert models:

On-line update rule for parameters Θ_i of expert i
- If we know the expert that is responsible for x
 $$\Theta_{ij} \leftarrow \Theta_{ij} + \alpha_{ij} (y - \mu_i) x_j$$
- If we do not know the expert
 $$\Theta_{ij} \leftarrow \Theta_{ij} + \alpha_{ij} h_i (y - \mu_i) x_j$$

h_i - responsibility of the ith expert = a kind of posterior

$$h_i (x, y) = \frac{g_i (x) p(y | x, \omega_i, \theta)}{\sum_{u=1}^{k} g_u (x) p(y | x, \omega_u, \theta)} = \frac{g_i (x) \exp \left(-\frac{1}{2} \|y - \mu_i\|^2 \right)}{\sum_{u=1}^{k} g_u (x) \exp \left(-\frac{1}{2} \|y - \mu_u\|^2 \right)}$$

$g_i (x)$ - a prior $\exp (...)$ - a likelihood

Learning mixtures of experts

Learning of parameters of the gating/switching network:
- **On-line learning of gating network parameters η_i**
 $$\eta_{ij} \leftarrow \eta_{ij} + \beta_{ij} (h_i (x, y) - g_i (x)) x_j$$

- The learning with conditional mixtures can be extended to learning of parameters of an **arbitrary expert network**
 - e.g. logistic regression, multilayer neural network
 $$\Theta_{ij} \leftarrow \Theta_{ij} + \beta_{ij} \frac{\partial l}{\partial \Theta_{ij}}$$
 $$\frac{\partial l}{\partial \Theta_{ij}} = \frac{\partial l}{\partial \mu_i} \frac{\partial \mu_i}{\partial \Theta_{ij}} = h_i \frac{\partial \mu_i}{\partial \Theta_{ij}}$$
Learning mixture of experts

EM algorithm for learning the mixture components

Algorithm:
Initialize parameters \(\Theta \)
Repeat
Set \(\Theta' = \Theta \)
1. Expectation step
\[
Q(\Theta | \Theta') = E_{H|X,Y,\Theta} \log P(H, Y | X, \Theta, \xi)
\]
2. Maximization step
\[
\Theta = \arg \max_{\Theta} Q(\Theta | \Theta')
\]
until no or small improvement in \(Q(\Theta | \Theta') \)
– Hidden variables are identities of expert networks responsible for \((x,y)\) data points

EM for Learning mixture of experts

- Assume we have a set of linear experts
 \[
 \mu_i = \theta_i^T x
 \]
- Assume a softmax gating network
 \[
 g_i(x) = P(\omega_i | x, \eta)
 \]
- Q function to optimize
 \[
 Q(\Theta | \Theta') = E_{H|X,Y,\Theta} \log P(H, Y | X, \Theta, \xi)
 \]
- Assume:
 - \(l \) indexes different data points
 - \(\delta_i^l \) an indicator variable for the data point \(l \) to be covered by an expert \(i \)
 \[
 Q(\Theta | \Theta') = \sum_l \sum_i E(\delta_i^l | x^l, y^l, \Theta', \eta') \log P(y^l, \omega_i | x^l, \Theta, \eta))
 \]
Learning mixture of experts with EM

• Assume:
 – \(l \) indexes different data points
 – \(\delta^l \) an indicator variable for data point \(l \) and expert \(i \)

\[
Q(\Theta | \Theta') = \sum_l \sum_i E(\delta^l_i | x^l, y^l, \Theta', \eta') \log(P(y^l_i, \omega_i | x^l_i, \Theta, \eta))
\]

Responsibility of the expert \(i \) for \((x,y)\)

\[
E(\delta^l_i | x^l, y^l, \Theta', \eta') = h^l_i(x^l, y^l) = \frac{g_i(x^l) p(y | x^l, \omega_i, \Theta')}{\sum_u g_u(x^l) p(y | x^l, \omega_u, \Theta')}
\]

\[
Q(\Theta | \Theta') = \sum_l \sum_i h^l_i(x^l, y^l) \log(P(y^l_i, \omega_i | x^l_i, \Theta, \eta))
\]

EM for learning the mixture of experts

• The maximization step boils down to the problem that is equivalent to the problem of finding the ML estimates of the parameters of the expert and gating networks

\[
Q(\Theta | \Theta') = \sum_l \sum_i h^l_i(x^l, y^l) \log(P(y^l_i, \omega_i | x^l_i, \Theta, \eta))
\]

\[
\log(P(y^l_i, \omega_i | x^l_i, \Theta, \eta)) = \log P(y^l_i | \omega_i, x^l_i, \Theta) + \log P(\omega_i | x^l_i, \eta)
\]

Expert network \(i \)
(Linear regression)

Gating network
(Softmax)

• Note that any optimization technique can be applied in this step

CS 2750 Machine Learning
Learning mixture of experts

- Note that we can use different expert and gating models
- For example:
 - Experts: logistic regression models
 \[y_i = \frac{1}{1 + \exp(-\theta_i^T x)} \]
 - Gating network: a **generative latent variable model**
 \[g_i(x) = P(\omega_i | x, \eta) \]
- Likelihood of \(y \):
 \[P(y | x, \Theta, \eta) = \sum_{u=1}^{k} P(\omega_u | x, \eta) p(y | x, \omega_u, \Theta) \]
Hierarchical mixture model

An output is conditioned (gated) on multiple mixture levels

\[
P(y | x, \Theta) = \sum_u P(\omega_u | x, \eta) \sum_v P(\omega_{uv} | x, \omega_u, \xi_u) \sum_s P(\omega_{uv,s} | x, \omega_u, \omega_{uv}, \ldots) P(y | x, \omega_u, \omega_{uv}, \ldots, \theta_{uv,s})
\]

- **Define** \(\Omega_{uv,s} = \{ \omega_a, \omega_{uv}, \ldots, \omega_{uv,s} \} \)

- **Then**

\[
P(y | x, \Theta) = \sum_u \sum_v \sum_s P(\Omega_{uv,s} | x, \Theta) P(y | x, \Omega_{uv,s})
\]

- Mixture model is a kind of soft decision tree model
- With a fixed tree structure!!

Hierarchical mixture of experts

- Multiple levels of probabilistic gating functions

\[
g_u(x) = P(\omega_u | x, \Theta) \\
g_{uv}(x) = P(\omega_{uv} | x, \omega_u, \Theta)
\]

- Multiple levels of responsibilities

\[
h_u(x, y) = P(\omega_u | x, y, \Theta) \\
h_{uv}(x, y) = P(\omega_{uv} | x, y, \omega_u, \Theta)
\]

- How they are related?

\[
P(\omega_{uv} | x, y, \omega_u, \Theta) = \frac{P(y | x, \omega_u, \omega_{uv}, \Theta) P(\omega_{uv} | x, \omega_u, \Theta)}{\sum_v P(y | x, \omega_u, \omega_{uv}, \Theta) P(\omega_{uv} | x, \omega_u, \Theta)}
\]

\[
= \sum_v P(y, \omega_{uv} | x, \omega_u, \Theta) = P(y | x, \omega_u, \Theta)
\]
Hierarchical mixture of experts

- **Responsibility for the top layer**

\[h_u (x, y) = P(\omega_u | x, y, \Theta) = \frac{P(y | x, \omega_u, \Theta)P(\omega_u | x, \Theta)}{\sum_u P(y | x, \omega_u, \Theta)P(\omega_u | x, \Theta)} \]

- But \(P(y | x, \omega_u \Theta) \) is computed while computing \(h_{vl} (x, y) = P(\omega_{uv} | x, y, \omega_u, \Theta) \)

- **General algorithm:**
 - Downward sweep; calculate
 \[g_{vl} (x) = P(\omega_{uv} | x, \omega_u, \Theta) \]
 - Upward sweep; calculate
 \[h_u (x, y) = P(\omega_u | x, y, \Theta) \]

On-line learning

- Assume linear experts \(\mu_{uv} = \Theta_{uv}^T x \)

- **Gradients (vector form):**

\[\frac{\partial l}{\partial \Theta_{uv}} = h_u h_{vl} (y - \mu_{uv}) x \]

\[\frac{\partial l}{\partial \eta} = (h_u - g_u) x \]
 Top level (root) node

\[\frac{\partial l}{\partial \xi} = h_u (h_{vl} - g_{vl}) x \]
 Second level node

- Again: can it be extended to different expert networks

Ensemble methods

- **Mixture of experts**
 - Multiple ‘base’ models (classifiers, regressors), each covers a different part (region) of the input space

- **Committee machines:**
 - Multiple ‘base’ models (classifiers, regressors), each covers the complete input space
 - Each base model is trained on a slightly different train set
 - Combine predictions of all models to produce the output
 - **Goal:** Improve the accuracy of the ‘base’ model
 - **Methods:**
 - Bagging
 - Boosting
 - Stacking (not covered)

Bagging (Bootstrap Aggregating)

- **Given:**
 - Training set of N examples
 - A class of learning models (e.g. decision trees, neural networks, …)

- **Method:**
 - Train multiple (k) models on different samples (data splits) and average their predictions
 - Predict (test) by averaging the results of k models

- **Goal:**
 - Improve the accuracy of one model by using its multiple copies
 - Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method
Bagging algorithm

- **Training**
 - In each iteration t, $t=1,\ldots,T$
 - Randomly sample with replacement N samples from the training set
 - Train a chosen “base model” (e.g. neural network, decision tree) on the samples

- **Test**
 - For each test example
 - Start all trained base models
 - Predict by combining results of all T trained models:
 - **Regression**: averaging
 - **Classification**: a majority vote

Simple Majority Voting

Test examples

![Diagram showing a simple majority voting process with three hypotheses (H_1, H_2, H_3) and their classification results.](image)

- **Class “yes”**
- **Class “no”**
Analysis of Bagging

- **Expected error** = Bias + Variance
 - *Expected error* is the expected discrepancy between the estimated and true function
 \[E\left[\left(\hat{f}(X) - E[f(X)] \right)^2 \right] \]
 - *Bias* is squared discrepancy between averaged estimated and true function
 \[\left(E\left[\hat{f}(X) \right] - E[f(X)] \right)^2 \]
 - *Variance* is expected divergence of the estimated function vs. its average value
 \[E\left[\left(\hat{f}(X) - E[\hat{f}(X)] \right)^2 \right] \]

When Bagging works?
Under-fitting and over-fitting

- **Under-fitting:**
 - High bias (models are not accurate)
 - Small variance (smaller influence of examples in the training set)
- **Over-fitting:**
 - Small bias (models flexible enough to fit well to training data)
 - Large variance (models depend very much on the training set)
Averaging decreases variance

• **Example**
 - Assume we measure a random variable x with a $N(\mu, \sigma^2)$ distribution
 - If only one measurement x_1 is done,
 • The expected mean of the measurement is μ
 • Variance is $\text{Var}(x_1) = \sigma^2$
 - If random variable x is measured K times ($x_1, x_2, \ldots x_k$) and the value is estimated as: $(x_1 + x_2 + \ldots + x_k)/K$,
 • Mean of the estimate is still μ
 • But, variance is smaller:
 - $[\text{Var}(x_1) + \ldots + \text{Var}(x_k)]/K^2 = K\sigma^2 / K^2 = \sigma^2/K$
 - Observe: **Bagging is a kind of averaging!**

When Bagging works

• **Main property of Bagging** (proof omitted)
 - Bagging **decreases variance** of the base model without changing the bias!!!
 - Why? averaging!
• **Bagging typically helps**
 - When applied with an over-fitted base model
 • High dependency on actual training data
• **It does not help much**
 - High bias. When the base model is robust to the changes in the training data (due to sampling)
Boosting

- **Mixture of experts**
 - One expert per region
 - Expert switching
- **Bagging**
 - Multiple models on the complete space, a learner is not biased to any region
 - Learners are learned independently
- **Boosting**
 - Every learner covers the complete space
 - Learners are biased to regions not predicted well by other learners
 - Learners are dependent