Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

Administration

Instructor:
 Milos Hauskrecht
 milos@cs.pitt.edu
 5329 Sennott Square, x4-8845

TA:
 Zhipeng (Patrick) Luo
 ZHL78@pitt.edu
 6509 Sennott Square

Office hours: TBA
Administration

Study material

• Handouts, your notes and course readings
• Primary textbook:

Other books:

– J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2011.
Administration

- **Homeworks:** weekly
 - **Programming tool:** Matlab (CSSD machines and labs)
 - **Matlab Tutorial:** next week
- **Exams:**
 - **Midterm** (March)
 - **Final** (April 13-17)
- **Final project:**
 - **Written report + Oral presentation**
 (April 20-24)
- **Lectures:**
 - **Attendance and Activity**

Tentative topics

- Introduction to Machine Learning
- **Density estimation.**
- **Supervised Learning.**
 - Linear models for regression and classification.
- **Unsupervised Learning.**
 - Learning Bayesian networks.
 - Latent variable models. Expectation maximization.
 - Clustering
Tentative topics (cont)

- **Dimensionality reduction.**
 - Feature extraction.
 - Principal component analysis (PCA)
- **Ensemble methods.**
 - Mixture models.
 - Bagging and boosting.
- **Reinforcement learning**

Machine Learning

- The field of **machine learning** studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment.

- The need for building agents capable of learning is everywhere
 - predictions in medicine,
 - text and web page classification,
 - speech recognition,
 - image/text retrieval,
 - commercial software
Learning

Learning process:
Learner (a computer program) processes data D representing past experiences and tries to either develop an appropriate response to future data, or describe in some meaningful way the data seen.

Example:
Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:
- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms

Types of learning

- **Supervised learning**
 - Learning mapping between input x and desired output y
 - Teacher gives me y’s for the learning purposes
- **Unsupervised learning**
 - Learning relations between data components
 - No specific outputs given by a teacher
- **Reinforcement learning**
 - Learning mapping between input x and desired output y
 - Critic does not give me y’s but instead a signal (reinforcement) of how good my answer was
- **Other types of learning:**
 - Concept learning, Active learning, Transfer learning, Deep learning
Supervised learning

Data: \(D = \{d_1, d_2, \ldots, d_n\} \) \hspace{1em} a set of \(n \) examples
\(d_i = \langle x_i, y_i \rangle \)
\(x_i \) is input vector, and \(y \) is desired output (given by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)
\(s.t. \ \ y_i \approx f(x_i) \) \hspace{.5em} for all \(i = 1, \ldots, n \)

Two types of problems:

- **Regression:** \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is **continuous**
- **Classification:** \(X \) discrete or continuous \(\rightarrow \)
 \(Y \) is **discrete**

Supervised learning examples

- **Regression:** \(Y \) is **continuous**

 Debt/equity
 Earnings
 Future product orders \(\rightarrow \) company stock price

- **Classification:** \(Y \) is **discrete**

 Handwritten digit (array of 0,1s) \(\rightarrow \) Label “3”
Unsupervised learning

- **Data:**
 \[D = \{d_1, d_2, \ldots, d_n\} \]

 \[d_i = x_i \quad \text{vector of values} \]

 No target value (output) \(y \)

- **Objective:**
 - learn relations between samples, components of samples

Types of problems:

- **Clustering**
 - Group together “similar” examples, e.g. patient cases

- **Density estimation**
 - Model probabilistically the population of samples

Unsupervised learning example

- **Clustering.** Group together similar examples
 \[d_i = x_i \]
Unsupervised learning example

• **Clustering.** Group together similar examples \(d_i = x_i \)

![Image of clustering example]

Unsupervised learning example

• **Density estimation.** We want to build the probability model \(P(x) \) of a population from which we draw examples \(d_i = x_i \)

![Image of density estimation example]
Unsupervised learning. Density estimation

- A probability density of a point in the two dimensional space
 - Model used here: **Mixture of Gaussians**

Reinforcement learning

- We want to learn: \(f : X \to Y \)
- We see samples of \(x \) but not \(y \)
- Instead of \(y \) we get a feedback (reinforcement) from a **critic** about how good our output was

- The goal is to select outputs that lead to the best reinforcement
Learning: first look

- Assume we see examples of pairs \((x, y)\) in \(D\) and we want to learn the mapping \(f : X \rightarrow Y\) to predict \(y\) for some future \(x\)
- We get the data \(D\) - what should we do?

Learning: first look

- **Problem:** many possible functions \(f : X \rightarrow Y\) exists for representing the mapping between \(x\) and \(y\)
- Which one to choose? Many examples still unseen!
Learning: first look

- Solution: make an assumption about the model, say,
 \[f(x) = ax + b \]

Learning: first look

- Choosing a parametric model or a set of models is not enough. Still too many functions \(f(x) = ax + b \)
 - One for every pair of parameters \(a, b \)
Fitting the data to the model

- We want the **best set** of model parameters

Objective: Find parameters that:
- reduce the misfit between the model M and observed data D
- Or, (in other words) explain the data the best

Objective function:
- **Error function:** Measures the misfit between D and M
- **Examples of error functions:**
 - Average Square Error $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$
 - Average misclassification error $\frac{1}{n} \sum_{i=1}^{n} 1_{y_i \neq f(x_i)}$

Average # of misclassified cases

Fitting the data to the model

- **Linear regression problem**
 - Minimizes the squared error function for the linear model
 - minimizes $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$
Learning: summary

Three basic steps:

• **Select a model** or a set of models (with parameters)
 E.g. \(f(x) = ax + b \)

• **Select the error function** to be optimized
 E.g. \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

• **Find the set of parameters optimizing the error function**
 – The model and parameters with the smallest error represent
 the best fit of the model to the data

But there are problems one must be careful about …

Learning

Problem

• We fit the model based on past examples observed in \(D \)
• But ultimately we are interested in learning the mapping that
 performs well on the whole population of examples

Training data: Data used to fit the parameters of the model

Training error:

\[
\text{Error}(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2
\]

True (generalization) error (over the whole population):

\[
E_{(x,y)}[(y - f(x))^2]
\]

Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error ?
Overfitting

- Assume we have a set of 10 points and we consider polynomial functions as our possible models

- Fitting a linear function with the square error
- Error is nonzero
Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Overfitting

- Is it always good to minimize the error of the observed data?
Overfitting

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

More important: How do we perform on the unseen data?
Overfitting

Situation when the training error is low and the generalization error is high. Causes of the phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize

 \[E_{(x,y)}[(y - f(x))^2] \]

 - But it cannot be computed exactly
 - Sample mean only approximates the true mean

- Optimizing (mean) training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

 \[\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \]

 - So how to test the generalization error?
How to evaluate the learner’s performance?

- **Generalization error** is the true error for the population of examples we would like to optimize
- **Sample mean only approximates it**
- **Two ways to assess the generalization error is:**
 - **Theoretical:** Law of Large numbers
 * statistical bounds on the difference between the true and sample mean errors
 - **Practical:** Use a separate data set with \(m \) data samples to test the model
 * (Mean) test error \[
 \frac{1}{m} \sum_{j=1}^{m} (y_j - f'(x_j))^2
 \]

Testing of learning models

- **Simple holdout method**
 - Divide the data to the training and test data

 ![Diagram of the simple holdout method]

 - Typically 2/3 training and 1/3 testing
1. Take a dataset D and divide it into:
 - Training data set
 - Testing data set

2. Use the training set and your favorite ML algorithm to train the learner

3. Test (evaluate) the learner on the testing data set

 - The results on the testing set can be used to compare different learners powered with different models and learning algorithms
A learning system: basic cycle

1. Data: \(D = \{d_1, d_2, \ldots, d_n\} \)

2. Model selection:
 - Select a model or a set of models (with parameters)
 E.g. \(y = ax + b \)

3. Choose the objective function
 - Squared error \(\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \)

4. Learning:
 - Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error

5. Testing:
 - Apply the learned model to new data
 - E.g. predict ys for new inputs \(x \) using learned \(f(x) \)
 - Evaluate on the test data