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Logistic regression model

* Defines a linear decision boundary
* Discriminant functions:

9,(x) = g(w'x) go(x) =1-g(w'x)
o where 0(z)=1/(1+e"*) -isalogistic function

f(x,w)=0;(W'x)=g(w'x)
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Logistic regression model. Decision boundary

LR defines a linear decision boundary
Example: 2 classes (blue and red points)

Decision boundary
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Logistic regression: parameter learning
Log likelihood
I(D,w) = z yilogu; +(1—y;)log(1- x;)

i=1

Derivatives of the loglikelihood

a n
-——1I(D,w) =
oW, (D.w) i=L

J

Nonlinear in weights !!

- Xi,j(yi - g(zi))

V, DW= Y %, (v - 9w R)) = X x, (v~ F(w,x,)

i=1

Gradient descent:

w® e w* — g (k) [-1(D, W) _us

w® e wiD (k)Y Iy, - (W x)lx,
i=1
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Generative approach to classification

Logistic regression: learns a model of p(Y|x)
Generative approach:
1. Represents and learns the joint distribution p(x,Y)
2. Uses it to define probabilistic discriminant functions
Eg g,(x)=p(y=0[x)  9:(x)=p(y=1[x)
Typical joint model p(x,y) = p(x|y)p(y)
« p(x|Y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x[y=0) p(x|y=1)
« P(Y) =Priorson classes - probability of classy
binary classification: Bernoulli distribution

p(y=0)+p(y=1)-=1
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Quadratic discriminant analysis (QDA)

Model:
* Class-conditional distributions
— multivariate normal distributions
x~N(p, X, for y=0
x~N(p,X2,) for y=1
Multivariate normal x ~ N (p, X)

p(x |1 E) = exp[—%(x—ufz-l(x—u)}

-
(272')d /2 |Z|l/2
* Priors on classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y,0)=0"1-0)"" y €{0,1}
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Learning Quadratic discriminant analysis

(QDA)

* Learning Class-conditional distributions

— Learn parameters of 2 multivariate normal
distributions

x~N(p, X, for y=0
x~N(p,X2,) for y=1

— Use the density estimation methods

* Learning Priors on classes (class 0,1) y ~ Bernoulli
— Learn the parameter of the Bernoulli distribution
— Again use the density estimation methods

p(y,0)=6"@1-6)" y {01}
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QDA
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2 Gaussian class-conditional densities

Class conditional densities
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QDA: Making class decision

Basically we need to design discriminant functions

» Posterior of a class — choose the class with better posterior
probability

Py=1[x)>p(y=0]x) e then y=1
9. (x) g, (x) else y=0

pP(x|u,Z)p(y=1)

—1]x) =
P ) T 20 (Y = 0)+ p(x [0, Z) (Y =D

* Itis sufficient to compare:

P(x |y, Ey)p(Y =1)> p(x| gy, Ey)p(y =0)
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QDA: Quadratic decision boundary

Contours of class-conditional densities
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QDA: Quadratic decision boundary

Lets us model a quadratic decision boundary

Decision boundary
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Linear discriminant analysis (LDA)
When covariances are the same  x ~ N (n,, ), y=0
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LDA: Linear decision boundary

Contours of class-conditional densities
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LDA: linear decision boundary

Decision boundary
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Generative approach to classification

Logistic regression: learns a model of pP(Y|x)
Generative approach:
1. Represents and learns the joint distribution p(x,Y)
2. Uses it to define probabilistic discriminant functions
go(x)=p(y=0[x)  9,(x)=p(y=1[x)
Typical joint model p(x,y) = p(x|y)p(y)
« Pp(x|Y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x[y=0) p(x|y=1)
« P(Y) =Priorson classes - probability of classy
binary classification: Bernoulli distribution

p(y=0)+p(y=1)-=1
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Naive Bayes classifier

* A generative classifier model with additional simplifying
assumptions:

— All input attributes are conditionally independent of each
other given the class.

So we have:

p(x.y) = (x| ) p(Y) /O\ Y
pxIy) =] p(x1y) S g
= X, X, .. X4
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Learning parameters of the model

Much simpler density estimation problems
» We need to learn:
p(x|y=0) and p(x[y=1) and p(y)

» Because of the assumption of the conditional independence we
need to learn:

for every variablei: p(x;|y=0)and p(x;|y=1)
* Much easier if the number of input attributes is large
* Also, the model gives us a flexibility to represent input
attributes of different forms !!!

» E.g. one attribute can be modeled using the Bernoulli, the
other using Gaussian density, or as a Poisson distribution
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Making a class decision for the Naive Bayes

Discriminant functions

* Posterior of a class — choose the class with better posterior
probability

p(y=1]x)>p(y=0[x) =) trllen y:01
— — else y=
g,(x) d,(x)

(H p(X; | ®l,i)J p(y=1

i=1

p(y =1|x) = a
(H p(x |®1,ij)p(y=0)+(1_[ p(x I®z,i)J p(y =1)

i=1
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Back to logistic regression

* Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices
X~ N(u,,2) for y=0
X~N(u,2) for y=1

¢ Two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

pP(y =1|x,pq, 1y, ) = g(W'x)
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When is the logistic regression model correct?

* Members of the exponential family can be often more
naturally described as

f(x]0,9) = h(x @) exp {w}

a(e)

0 - Alocation parameter @ - Ascale parameter

* Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small network
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Linear units

Linear regression Logistic regression
f(x)=w'x f(x)=p(y=1|x,w)=g(w'x)
1
W f(x)=
% 2, hymi
XZ
. w
X4 X4
Gradient update: Gradient update:
w <—w+0521(yi —f(x))x, The same w (—W+a2(yi —f(x))x
i1 a — o1
Online: yy (—W+0{(y— f (X))X Online: vy (_W_f_a(y —f (X))X
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Gradient-based learning

* The same simple gradient update rule derived for both the
linear and logistic regression models

» Where the magic comes from?

» Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise Gaussian noise

y=w'x+e& ¢~N(0,0%)

— Logistic + Bernoulli

Bernoulli trial

y = Bernoulli(9) z, Lo

0=p(y=1|x)=g(w'x)

X4
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Generalized linear models (GLIM)

Assumptions:
» The conditional mean (expectation) is:
u=f(w'x)
— Where f () isaresponse function

» Output y is characterized by an exponential family distribution
with a conditional mean

Examples:

Gaussian noise

— Linear model + Gaussian noise
y=w'x+& ¢&~N(0,07%)

- LogiStic + Bernoulli . Bernoulli trial
. 5 .
y ~ Bernoulli(9) % s Lo,
XZ
0 = g (W T X) = — :
l+e™™? X,
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Generalized linear models

A canonical response functions (. :
— encoded in the distribution

OTX—A(O)}

p(x|0,9) = h(X,q))eXp{ 2(0)

* Leads to a simple gradient form
* Example: Bernoulli distribution

pOx| ) = p* (1= ) = exp{log(lf‘ﬂJH |09(1—u)}
_ _H __1
9—|0g[1_ﬂJ 'Ll_1+e"9

— Logistic function matches the Bernoulli
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When does the logistic regression fail?

* Quadratic decision boundary is needed

Decision boundary

3
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When does the logistic regression fail?

» Another example of a non-linear decision boundary
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Non-linear extension of logistic regression

* use feature (basis) functions to model nonlinearities
« the same trick as used for the linear regression

Linear regress;on Logistic regression
m

P =w,+ 2 wig;(x)  F(x)=g(w, + 3 w;¢;(x))
j=1 i=1

3 (x) - anarbitrary function of x
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Evaluation of classifiers
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Evaluation

For any data set we use to test the classification model on we can
build a confusion matrix:

— Counts of examples with:
— class label @ ; that are classified with a label «

target
] w=1 w=0
. a =1 140 17
predict
a =0 20 54
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Evaluation

For any data set we use to test the model we can build a

confusion matrix:
target

owo=1 w=0
a =1 17
a =0 20

predict

agreement

Error: ?
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Evaluation

For any data set we use to test the model we can build a

confusion matrix:
target

owo=1 =0
a =1 17
a =0 20

predict

agreement

Error: =37/231
Accuracy = 1- Error = 194/231
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have

names:
target

owo=1 ow=0
a =1 TP FP
FN TN

predict

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)
FN: False negative (a miss)
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Additional statistics

* Sensitivity (recall) TP

=1 TP FP
predict  , —o FN TN
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Additional statistics

Sensitivity (recall) TP
SENS =
TP + FN
Specificity
SPEC = _IN__
TN + FP

Positive predictive value (precision)

PPT =P
TP+ FP
Negative predictive value
NPV = _ N
TN + FN
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Binary classification: additional statistics

Confusion matrix

target
1 0
predict 1 140 10 PPV =140/150
0 20 180 NPV =180/200
SENS=140/160 SPEC=180/190

Row and column quantities:

— Sensitivity (SENS)

— Specificity (SPEC)

— Positive predictive value (PPV)
— Negative predictive value (NPV)
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Classifiers

Project datapoints to one dimensional space:
Defined for example by: wix or p(y=1|x,w)

Decision boundary

wix =0

L L L L L L L ,
-2 -1.5 -1 -0.5 o 0.5 1 1.5 2

CS 2750 Machine Learning

Binary decisions: Receiver Operating Curves

0.1

-0.02

¢ Probabilities:
— SENS p(X>Xx*|xew,)
_ SPEC p(x < x*|[x e w,)
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Receiver Operating Characteristic (ROC)

* ROC curve plots :
SN= p(x > x*|xe w,) & @
1-SP=p(x > x*|x € ,) - A
for different x* n 4_ X*— —

SENS N
P(x>Xx*|xew,)

"1-SPEC  P(X> x*|x € w,)
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ROC curve

Case 1 = Case?2 = Case3
/\\ N\ 7 \\
L S~
/ -
h ~ ]

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7

p(Xx>X*|x € w,)
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Receiver operating characteristic

* ROC

— shows the discriminability between the two classes under
different decision biases

* Decision bias
— can be changed using different loss function

* Quality of a classification model:
— Area under the ROC
— Best value 1, worst (no discriminability): 0.5
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