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* Density estimation:

— Maximum likelihood (ML)

— Bayesian parameter estimates
- MAP

Bernoulli distribution

Binomial distribution

Multinomial distribution

Normal distribution

CS 2750 Machine Learning




Density estimation

Density estimation: is an unsupervised learning problem
* Goal: Learn relations among attributes in the data

Data: D={D,,D,,.,D,}
D, =x; avector of attribute values
Attributes:
» modeled by random variables X={X,, X,,..., X,} with
— Continuous or discrete valued variables

Density estimation: learn the underlying probability
distribution: p(X)= p(X,, X,,...,X,;) fromD
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Density estimation
Data: p ={D,,D,,.,.D }
D, =x, a vector of attribute values

Objective: estimate the underlying probability distribution over
variables X , p(X), using examplesin D

true distribution n samples esfimate
p(X) D :{Dl, D21"1 Dn} p(X)

Standard (iid) assumptions: Samples
e are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

« the distribution is modeled using a set of parameters ®
p(X]G)

» Example: mean and covariances of a multivariate normal

» Estimation: find parameters ® describing data D

Non-parametric

* The model of the distribution utilizes all examples in D

» Asif all examples were parameters of the distribution

* Examples: Nearest-neighbor
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
* Asetof random variables X={X,, X,,..., X}
* A model of the distribution over variables in X
with parameters @ : p(X|0®)

e Data D={D,D,,.,D,}

Objective: find parameters ® such that p(X|®) fits data D

the best
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Parameter estimation

e Maximum likelihood (ML)
maximize P(D|©,¢)
— yields: one set of parameters ®),
— the target distribution is approximated as:
ﬁ(X) = p(X | ®ML)
* Bayesian parameter estimation
— uses the posterior distribution over possible parameters

20D, - 2L10.£)p(O]£)

p(D[<)
— Yields: all possible settingsof ® (and their “weights”)

— The target distribution is approximated as:
P(X) = p(X|D) = [ p(X |©)p(®]|D,&)d®
(0]
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Parameter estimation

Other possible criteria:
* Maximum a posteriori probability (MAP)
maximize P(®@|D,<&) (mode of the posterior)
— Yields: one set of parameters ®M AP
— Approximation:
ﬁ(X) = p(X | ®MAP)
* Expected value of the parameter
0= E(®) (mean of the posterior)
— Expectation taken with regard to posterior P(® | D, &)
— Yields: one set of parameters
— Approximation: A
p(X) = p(X|O)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x; such that
* head x =1

e tail Xi =0

Model: probability of ahead @
probability of atail ~ (1-6)
Objective: )

We would like to estimate the probability of a head ¢
from data
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Parameter estimation. Example.

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your estimate of the probability of a head ?

0 =2
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Parameter estimation. Example

» Assume the unknown and possibly biased coin
* Probability of the head is &
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate
§-2_06
25
This is the maximum likelihood estimate of the parameter &
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Probability of an outcome

Data: D asequence of outcomes X such that
* head Xx; =1
e tail X =0
Model: probability of ahead €
probability of atail  (1-6)

Assume: we know the probability &
Probability of an outcome of a coin flip X

P(x,|6)=6(1—-60)"") <= Bernoulli distribution
— Combines the probability of a head and a tail
— So that X; isgoing to pick its correct probability

- Gives @ for x =1
— Gives (1-6) for x. =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @
probability of atail ~ (1-6)
Assume: a sequence of independent coin flips

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|8)="
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail  (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|#)=060(1-60)6(1-6)6O
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail ~ (1-6)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101
What is the probability of observing a data sequence D:

P(D|0)=060(1-0)0(L-0)0

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail  (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|#)=66(1-60)0(1-6)6
6
P(DIo)=]]o"@-o)"

i=1
Can be rewritten using the Bernoulli distribution:
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The goodness of fit to the data

Learning: we do not know the value of the parameter &
Our learning goal:

 Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

P(D10)=]] 0" @-0)*

Intuition:
» more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data
fit ;

Error (D,0) =-P(D |9)
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Maximum likelihood (ML) estimate.

Likelihood of data: n
P(D10.&)=]]0"a-0)*"
i—1

Maximum likelihood estimate
6, =argmax P(D|6,¢&)
0

Optimize log-likelihood (the same as maximizing likelihood)

I(D,6) = log P(D |6, &) = |ogf[9xi (1 0)) =

Zn:xi logé +(1-x,)log(l—0) = |OI(;I92 X, + Iog(l—H)Z(l— X,)

i=1

N, - number of heads seen N, - number of tails seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
I(D,8)=N,logé+N, log(Ll—-6)
Set derivative to zero
ADO N N, _
00 ¢ (1-09)

Solving 0=

ML Solution: O = N, _ N,
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of head and tail ?

Head: ¢ ZJZL:EZO.G
N N,+N, 25
Tail: (1_9ML):&:L:E:O_4
N N,+N, 25

CS 2750 Machine Learning

Maximum a posteriori estimate
Maximum a posteriori estimate
— Selects the mode of the posterior distribution
Ovpe = arg ;nax p@|D,¢)
Likelihood of data

P(D|& 0 L~ prior
p(@|D,¢) = ( lp(’é)l z; 1£) (via Bayes rule)

Normalizing factor

P(D]6,&) = H 0% (1-0)") =0 (1-0)"

P(@|&) - is the prior probability on

How to choose the prior probability?
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Prior distribution

Choice of prior: Beta distribution

o +a,)
() (a,)
[(x) - aGamma function TI'(x)=(x-1)T(x-1)
For integer valuesof x T'(n)=(n-1)!

p(9 | é:) = BEta(Q | al’aZ) = 00’1—1(1_9)112—1

Why to use Beta distribution?
Beta distribution “fits” Bernoulli trials - conjugate choices

P(D|6,&)=0"(1-0)"
Posterior distribution is again a Beta distribution

P(D|6,¢)Beta(@| oy, ax,)
P(D|S)

p(@|D,¢) = =Beta(d |, + N;,a, + N,)
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Beta distribution

3
a=101 a=1

b=10.1 b=1
2

0(0]&) = Beta(d] a,b) = - BFD) gaq_ gyt
['(@)I'(b)
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Posterior distribution

% v 3
~| prior ~| likelinood function
P Beta
1 * oy
0
00 0.5 1 0 0.5 1
B2 _ H
posterlor
1 Beta
0
0 0.5 1
7
P(D|@,¢&)Beta(d ,
0(0|D,&) = PO ?(DMS) 12:92) _ Beta(@| e, + Ny,at, +N,)
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Maximum a posterior probability

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

P(D|6,¢&)Beta(@| a,, ;)
P(D[$)

_ I'(ey+a,+N;+N,)

- I'(a,+N)I'(a, +N,)

p(@]D,5) =

=Beta(@|a, + N;,a, + N,)

0N1+a1—1 (1_ 6) Ny+a,-1

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as prior counts)

a,+N, -1
a,+a,+N +N,-2

MAP Solution:

HMAP =
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MAP estimate example

» Assume the unknown and possibly biased coin

* Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

e Assume p(@]|<&)=Beta(@]5,5)

What is the MAP estimate?
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MAP estimate example

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

« Assume p(@|&) = Beta(d]5,5)

What is the MAP estimate ?

N, +a; -1 N, +a, -1 _19
N-2 N, +N, +a,+a,-2 33

eMAP =
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MAP estimate example

* Note that the prior and data fit (data likelihood) are combined

e The MAP can be biased with large prior counts

* Itis hard to overturn it with a smaller sample size

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10
e Assume L
P(@1¢) = Beta(d|5,5) Owe =55
19
p(0 | &) = Beta(d | 5,20) Owe = g
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Bayesian framework

Both ML or MAP estimates pick one value of the parameter

» Assume: there are two different parameter settings that are
close in terms of their probability values. Using only one of
them may introduce a strong bias, if we use them, for
example, for predictions.

Bayesian parameter estimate

— Remedies the limitation of one choice

— Keeps all possible parameter values

— Where p(@]D, &) =Beta(@|a, + N, +N,)
* The posterior can be used to define p(A|D):

P(A|D)=[ p(A|®)p(®|D,£)dO
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Bayesian framework

* Predictive probability of an outcome x=1 in the next trial
P(x=1|D,¢)

Posterior density

1 —t—
P(x=1|D,&) = [P(x=1[6,£)p(0| D,£)do
0

= [p(01D,£)d0=E(®)

* Equivalent to the expected value of the parameter
— expectation is taken with respect to the posterior distribution

p(@|D,&) =Beta(@|a, + N, o, +N,)
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Expected value of the parameter

How to obtain the expected value?

l 0, DO +1,)
E(e): QBEta(eln 1 )d6?: 91—20771*1(1_0)772—1(:10
! o ! ()T (77,)

:Mj'g’h(l—e)”fldﬁ
L(m)(77,) 0
_ LOn+m,) 1“(771+1)F(’72)Jl'Beta(nl+1 77,)d60
L )T () T +m,+1)
o
_ !
Th+7,

Note:  T'(¢+1)=al(a) for integer values of «
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Expected value of the parameter

Substituting the results for the posterior:

p(@|D,&) =Beta(@|a, + N, a2, +N,)

o +N;

Weget  E@)=
o, +N; +a,+N,

Note that the mean of the posterior is yet another
“reasonable” parameter choice:

6=E(0)
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