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Reinforcement learning

* We want to learn the control policy: 7:X — A
* We see examples of x (but outputs a are not given)

 Instead of a we get a feedback r (reinforcement, reward) from a
critic quantifying how good the selected output was

Input x Output a
Learner D >

v

‘ -
Reinforcement r

Critic

» The reinforcements may not be deterministic
* Goal: find z:X — A with the best expected reinforcements
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Gambling example.

Game: 3 different biased coins are tossed

— The coin to be tossed is selected randomly from the three
options and | always see which coin | am going to play next

— | make bets on head or tail and I always wage $1
— If I win I get $1, otherwise | lose my bet

RL model:

— Input: X —a coin chosen for the next toss,

— Action: A - choice of head or tail,

— Reinforcements: {1, -1}

Apolicy 7: X —> A

Example: 7: | Coinl— head

Coin2— tail
Coin3— head
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Gambling example

RL model:

— Input: X —a coin chosen for the next toss,
— Action: A - choice of head or tail,

— Reinforcements: {1, -1}

— Apolicy r: | Coinl— head
Coin2— tail
Coin3— head
Learninggoal: find 7:X — A 7. | Coinl— ?
Coin2— ?
Coin3— ?

maximizing future expected profits

E (Z y'r,)  y adiscount factor = present value of money
t=0
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Agent navigation example.

» Agent navigation in the Maze:
— 4 moves in compass directions

— Effects of moves are stochastic — we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest expected

time
moves
. !
.r.,» - | =
Coi= }
4
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Agent navigation example

e The RL model:
— Input: X — position of an agent A
— Output: A —a move G IS_ZI
- -
\

MmOvVes

— Reinforcements: R
e -1 for each move
» +100 for reaching the goal

— Apolicy: 7: X > A

7. | Position1l — right
Position 2 — right

Position 20 — left

» Goal: find the policy maximizing future expected rewards

E(Z_Mn)
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Objectives of RL learning

* Objective:
Find amapping 7~ : X —> A
That maximizes some combination of future reinforcements
(rewards) received over time

» Valuation models (quantify how good the mapping is):
— Finite horizon model

.
EQ ) Time horizon: T >0
t=0
— Infinite horizon discounted model

EQ r'n) Discount factor: 0<y <1
t=0
— Average reward

1 T
lim —E r
T—)ooT (IZ:(:) t)
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Exploration vs. Exploitation

» The (learner) actively interacts with the environment:

— At the beginning the learner does not know anything about
the environment

— It gradually gains the experience and learns how to react to

the environment
» Dilemma (exploration-exploitation):

— After some number of steps, should I select the best
current choice (exploitation) or try to learn more about the
environment (exploration)?

— Exploitation may involve the selection of a sub-optimal
action and prevent the learning of the optimal choice

— Exploration may spend to much time on trying bad
currently suboptimal actions
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Effects of actions on the environment

Effect of actions on the environment (next input x to be seen)

* No effect, the distribution over possible x is fixed; action
consequences (rewards) are seen immediately,

» Otherwise, distribution of x can change; the rewards related to
the action can be seen with some delay.

Leads to two forms of reinforcement learning:
» Learning with immediate rewards

— Gambling example
» Learning with delayed rewards

— Agent navigation example; move choices affect the state
of the environment (position changes), a big reward at the
goal state is delayed

CS 2750 Machine Learning

RL with immediate rewards

 Game: 3different biased coins are tossed

— The coin to be tossed is selected randomly from the three
options and | always see which coin | am going to play next

— | make bets on head or tail and I always wage $1
— If I win I get $1, otherwise | lose my bet
* RL model:
— Input: X —a coin chosen for the next toss
— Action: A —head or tail bet
— Reinforcements: {1, -1}
« Learninggoal: find 7: X — A
maximizing the future expected profits over time

EQ 7'r) y adiscount factor = present value of money
t=0
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RL with immediate rewards

» Expected reward

E (Z 7'r,) y -adiscount factor = present value of money
t=0

* Immediate reward case:
— Reward for the choice becomes available immediately

— Our choice does not affect environment and thus future

rewards
E(Z yr)=E(r)+ E(r)+ E(rr)+..
t=0
Fo, iy Ip.. Rewards for every step

— Expected one step reward for input x and the choice a :
R(x,a)

CS 2750 Machine Learning

RL with immediate rewards

Immediate reward case:
» Reward for the choice a becomes available immediately

 Expected reward for the input x and choice a: R (X, a)
— For the gambling problem it can be defined as:
R(x,a;) = Z re;la;,x)P(o;|x,a;)
i
— o ;- afuture outcome of the coin toss
— Recall the definition of the expected loss
 Expected one step reward for a strategy 7:X — A

R(7) =2, R(x,7(x))P(x)

R(7) isthe expected reward for Iy, I, I, ..
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RL with immediate rewards

» Expected reward

E(Y 7)) = E(r)+ E(r) + E(r7n) + ..

t=0

* Optimizing the expected reward

max E(Y. 'r,) =max 3" y'E(r) =max Y y'R(z) = maxR(z)(Y. /")
=0 =0 =0 t=0

- (37" maxR(x)
max R(z) = max D RE,z(X)P(X) =), P(x)[m.;az)( R(x, 7 (x))]

Optimal strategy: z*: X — A

7 *(x)=arg max R(x,a)
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RL with immediate rewards

« We know that 7 *(x) = arg max R(x,a)

« Problem: In the RL framework we do not know R (x,a)
— The expected reward for performing action a at input x

« Howtoget R(x,a)?
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RL with immediate rewards

* Problem: In the RL framework we do not know R (x,a)

— The expected reward for performing action a at input x
 Solution:

— For each input x try different actions a

— Estimate R(x,a) using the average of observed rewards

~ 1 Ny a
R(x,a) = N Do

x,a i=1

— Action choice 7 (Xx) = arg max I':’(x, a)
— Accuracy of the estimate: statistics (Hoeffding’s bound)

PQﬁ(x,a)— R(x,a)|> £)< exp {—%} <5

B _ ) 2
— Number of samples: > (T max Igm.n ) n L
’ 2¢& 1)
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RL with immediate rewards

¢ On-line (stochastic approximation)
— An alternative way to estimate R (x,a)

* ldea:
— choose action a for input x and observe a reward r**®
— Update an estimate

FE(x,a)<— (1—05)I'-\~>(x,a)+oerx'a a - alearning rate

« Convergence property: The approximation converges in the
limit for an appropriate learning rate schedule.

* Assume: a (n(x,a)) - isa learning rate for nth trial of (x,a) pair
» Then the converge is assured if:

0

LY a(i)=w 2 f a(i)? < w

i=1 i=1
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Exploration vs. Exploitation

In the RL framework

— the (learner) actively interacts with the environment.

— Atany point in time it has an estimate of R (x,a) for any
input action pair

Dilemma:

— Should the learner use the current best choice of action
(exploitation)

7 (X) = arg max ﬁ(x, a)

aeA

— Or choose other action a and further improve its estimate
(exploration)

Different exploration/exploitation strategies exist
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Exploration vs. Exploitation

Uniform exploration
— Choose the “current” best choice with probability 1 - ¢
7 (x) = arg max R(x,a)

cA
_ All other choices are selected with a uniform probability
&

|Al-1

Boltzman exploration
— The action is chosen randomly but proportionally to its
current expected reward estimate
exp [Ii_(x,a)/T] )
> exp [ﬁ(x, a') /TJ

a'eA

T — is temperature parameter. What does it do?

p(alx) =
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RL with delayed rewards.

» Agent navigation in the Maze:
— 4 moves in compass directions

— Effects of moves are stochastic — we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest time

moves
: !
f .C» [ ]|=—>
Q= )
AN
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Learning with delayed rewards

e Actions, in addition to immediate rewards affect the next state
of the environment and thus indirectly also future rewards

* We need a model to represent environment changes
» The model we use is called Markov decision process (MDP)
— Frequently used in Al, OR, control theory

— Markov assumption: next state depends on the previous
state and action, and not states (actions) in the past

state,

reward ..

CS 2750 Machine Learning
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Markov decision process

action,;

reward .

Formal definition: 4uple (S, A,T,R)

Asetofstates S (X) locations of a robot

A set of actions A move actions

e Transition model Sx AxS — [0,] | where can | get
with different moves

Reward model SxAxS 5> %R reward/cost
for a transition
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MDP problem

 We want to find the best policy ~":s — A
e Value function (V) for a policy, quantifies the goodness of
a policy through, e.g. infinite horizon, discounted model

EQ »'r)
t=0
It: 1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through
expectation-based measures)

= N AN
\* A\~ 1\ { ~ 1\ (]
\ C 4 ]
A [ J »
G 1 G
f = f-A‘ k\\
] c
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Value of a policy for MDP

+ Assume afixed policy 7:S—A

* How to compute the value of a policy under infinite horizon
discounted model?

Fixed point equation:

V7 (s)=R(s,z(s) +7 P(s'|s,z(s)V~(s")
\ / \ 8'eS Y4

expected one step
reward for the first action

~
expected discounted reward for following
the policy for the rest of the steps

V=r+UV e v=>1-U)"r

— For afinite state space— we get a set of linear equations
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Optimal policy
* The value of the optimal policy

V7 (s) = max[R(s,a)Jr;/Z P(s'|s,a)V*(s')}
ach \ / N\__s'eS /|

N
expected one step expected discounted reward for following
reward for the first action the opt. policy for the rest of the steps

Value function mapping form:
V7 (s) = (HV ")(s)

« The optimal policy: 7 :S— A

7 (s) = arg max{R(s,a) +y P(s'|s,a)V*(s')}

aeA s'eS

CS 2750 Machine Learning
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Computing optimal policy

Dynamic programming. Value iteration:
— computes the optimal value function first then the policy
— iterative approximation
— converges to the optimal value function

Value iteration ( ¢ )
initialize 'V ;; Vis vector of values for all states
repeat
set V'« V
set V <« HV
until [V'-V|, <e¢
output 7" (s) = arg max [R(s,a) + }/Z P(s'|s,a)V (s')}

acA s'eS
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Reinforcement learning of optimal policies

* In the RL framework we do not know the MDP model !
» Goal: learn the optimal policy
7 1S > A
» Two basic approaches:
— Model based learning
* Learn the MDP model (probabilities, rewards) first
* Solve the MDP afterwards
— Model-free learning
 Learn how to act directly
* No need to learn the parameters of the MDP
— A number of clones of the two in the literature

CS 2750 Machine Learning
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Model-based learning

We need to learn transition probabilities and rewards
Learning of probabilities
— ML or Bayesian parameter estimates

— Use counts _ N
P(S'|s,a):% Ns,a :Z Ns,a,s'

s,a s'eS

Learning rewards
— Similar to learning with immediate rewards

~ 1 Ns,a
R(S,a) = N—Z ris’a

s,a i=1

Problem: on-line update of the policy
— would require us to solve an MDP after every update !!

CS 2750 Machine Learning

Model free learning

Motivation: value function update (value iteration):

V (s) « max {R(s,a)+yz P(s'|s,a)V(s')}

s'eS

Let
Q(s,a)=R(s,a)+y >, P(s'|s,a)V(s")

s'eS

Then V (s) < max Q(s,a)

Note that the update can be defined purely in terms of Q-
functions
Q(s,a) « R(s,a)+y > P(s'|s,a)max Q(s', a")

s'eS

CS 2750 Machine Learning
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Q-learning

» Q-learning uses the Q-value update idea
— But relies on a stochastic (on-line, sample by sample) update
Q(s,a) « R(s,a)+y ) P(s'|s,a)max Q(s',a’)

s'eS
is replaced with
d(s,a) «— (1- a)(j(s,a) + a(r(s, a)+y max é(s',a'))
r(s,a) -reward received from the environment after
performing an action a in state s
- new state reached after action a

S

a - learning rate, a function of N,
- a number of times a executed at s
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Q-learning

The on-line update rule is applied repeatedly during direct
interaction with an environment

Q-learning

initialize Q(s,a) =0 for all s,a pairs

observe current state s

repeat
select action a ; use some exploration/exploitation schedule
receive reward r
observe next state s’
update  Q(s,a) « (1—a)Q(s,a)+a(r+7/mgx Q(s',a'))
setstos’

end repeat

CS 2750 Machine Learning
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Q-learning convergence

The Q-learning is guaranteed to converge to the optimal Q-
values under the following conditions:

Every state is visited and every action in that state is tried
infinite number of times

— This is assured via exploration/exploitation schedule
The sequence of learning rates for each Q(s,a) satisfies:

o0 0

LY a(i)=w 2. Y a(i)<w

i=1 i=1

a(n(s,a)) -lsthe learning rate for the nth trial of (s,a)
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Exploration vs. Exploitation

In the RL with the delayed rewards

— At any point in time the learner has an estimate of é(x, a)
for any state action pair
Dilemma:
— Should the learner use the current best choice of action
(exploitation) R
7 (x) =arg max Q(x,a)

acA

— Or choose other action a and further improve its estimate of
Q(x,a) (exploration)

Exploration/exploitation strategies

— Uniform exploration

— Boltzman exploration

CS 2750 Machine Learning
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Q-learning speed-ups

» The basic Q-learning rule updates may propagate distant
(delayed) rewards very slowly

I —
My

B

Example:

‘,A - /A’

\

v

\

v

G
f-

)
» Goal: a high reward state
» To make the correct decision we need all Q-values for the
current position to be good
* Problem:
— in each run we back-propagate values only ‘one-step’ back.
It takes multiple trials to back-propagate values multiple
steps.
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Q-learning speed-ups
» Remedy: Backup values for a larger number of steps
Rewards from applying the policy
Qo=+, + 7, +. = Z 7',
We can substitute (immediate I'eW;’&S with n-step rewards):
Q" = Z P4y max Q. (s a)

Postpone the update for n steps and update with a longer
trajectory rewards

Qt+n+1(sla) <~ Qt+n(s’a) + a(qtn - Qt+n(s’a))

Problems: - larger variance
- exploration/exploitation switching
- wait n steps to update
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Q-learning speed-ups

* One step vs. n-step backup

= <= = <=
T S
\ L 47 \ L J §
s 3P
1 1
f_—Vf'A‘ - FTA

Problems with n-step backups:

- larger variance

- exploration/exploitation switching
- wait n steps to update
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Q-learning speed-ups

» Temporal difference (TD) method
— Remedy of the wait n-steps problem
— Partial back-up after every simulation step
 Similar idea: weather forecast adjustment

— —~
\A

TQQ\ ahE P
¥
\
_‘/

Different versions of this idea has been implemented
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RL successes

» Reinforcement learning is relatively simple

— On-line techniques can track non-stationary environments
and adapt to its changes

» Successful applications:

— TD Gammon — learned to play backgammon on the
championship level

— Elevator control
— Dynamic channel allocation in mobile telephony
— Robot navigation in the environment
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