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Dimensionality reduction 

• Is there a lower dimensional representation of the data 

that captures well its characteristics? 

• Assume: 

– We have an data                              such that  

 

–  Assume  the dimension d of the data point x is very large 

–  We want to analyze x 

• Methods of analysis are sensitive to the dimensionality d 

• Our goal:  

– Find a lower dimensional representation of data of 

dimension d’ < d 
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Principal component analysis (PCA) 

• Objective: We want to replace a high dimensional input with 

a small set of features (obtained by combining inputs) 

– Different from the feature subset selection !!! 

• PCA:  

– A linear transformation of d dimensional input x to M 

dimensional feature vector z such that                 under 

which the retained variance is maximal. 

– Equivalently it is the linear projection for which the sum of 

squares reconstruction cost is minimized. 
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PCA 
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PCA 
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97% variance retained    
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Principal component analysis (PCA) 

• PCA:  

– linear transformation of a d dimensional input x to M 

dimensional vector z such that               under which the 

retained variance is maximal. 

– Task independent 

• Fact: 

– A vector x can be represented using a set of orthonormal 

vectors u   

 

– Leads to transformation of coordinates  (from x to z using 

u’s) 
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PCA 

• Idea: replace d coordinates with M of      coordinates to 

represent x. We want to find the subset M of basis vectors. 

 

 

 

• How to choose the best set of basis vectors? 

– We want the subset that gives the best approximation of 

data x in the dataset on average (we use least squares fit) 
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PCA 

• Differentiate the error function with regard to all         and 
set equal to 0 we get: 

 

 

• Then we can rewrite: 

 

 

• The error function is optimized when basis vectors satisfy:  

 

 

The best M basis vectors: discard  vectors with d-M smallest 
eigenvalues (or keep vectors with M largest eigenvalues) 

Eigenvector         –  is called a principal component 
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PCA 

• Once eigenvectors       with largest eigenvalues are identified, 
they are used  to transform the original d-dimensional data to 
M dimensions 

 

 

 

 

 

• To find the “true” dimensionality of the data d’ we can just 
look at eigenvalues that contribute the most (small eigenvalues 
are disregarded) 

• Problem: PCA is a linear method. The “true” dimensionality 
can be overestimated. There can be non-linear correlations. 

• Modifications for nonlinearities: kernel PCA 
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Dimensionality reduction with neural nets 

• PCA is  limited to linear dimensionality reduction 

• To do non-linear reductions we can use neural nets 

• Auto-associative (or auto-encoder) network: a neural 

network with the same inputs and outputs ( x )   

 

 

 

 

 

 

 

• The middle layer corresponds to the reduced dimensions 
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Dimensionality reduction with neural nets 

• Error criterion: 

 

 

• Error measure tries to recover the original data through limited 

number of dimensions in the middle layer  

• Non-linearities modeled through  

 intermediate layers between  

 the middle layer and input/output 

• If no intermediate layers are used  

the model replicates PCA  

optimization through learning 
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Multidimensional scaling 

• Find a lower dimensional space projection such that the 
distances among data points are preserved 

 

• Used in visualization – d-diminensional data transformed to 
3D or 2D 

 

• Dissimilarities before projection   

 

• Objective: Optimize points and their coordinates by fitting the 
dissimilarities afterwards 
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Latent variable models 

Observed variables  x:  real valued vars  

Dimensionality d 

Latent variables (s):     Dimensionality k 
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Cooperative vector quantizer 

Model: 

Latent var si:  

     ~ Bernoulli distribution 

        parameter: i 
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Other unsupervised methods 

• Factor analysis (a latent variable model)  

• Decompose signal into multiple Gaussian sources 

 

 

 

 

• Independent component analysis:  

– Identify independent components/signals/sources in the 

original data 

– Non-Gaussian signals 
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