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Dimensionality reduction. Motivation.

+ Is there a lower dimensional representation of the data
that captures well its characteristics?

« Assume:
— We have an data  {x,,X,,.., Xy} such that
Xi = (%, X e %)
— Assume the dimension d of the data point x is very large
— We want to analyze x
» Methods of analysis are sensitive to the dimensionality d
« Our goal: Find a lower dimensional representation of data
» Two learning problems:
— supervised
— unsupervised

CS 2750 Machine Learning



mailto:milos@cs.pitt.educ

Dimensionality reduction for classification

Classification problem example:
— We have an input data{X,, X,,.., Xy} such that
X, = (X", X7,.., x°
and a set of corresponding output labels {y,, V,,.., Y\ }
— Assume the dimension d of the data point x is very large
—  We want to classify x
Problems with high dimensional input vectors

— A large number of parameters to learn, if a dataset is
small this can result in:

« Large variance of estimates and overfit

— it becomes hard to explain what features are important
in the model (too many choices some can be substitutable)
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Dimensionality reduction

Solutions:

— Selection of a smaller subset of inputs (features) from a
large set of inputs; train classifier on the reduced input set

— Combination of high dimensional inputs to a smaller set
of features ¢, (X); train classifier on new features

selection

-~

combination %7
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Feature selection

How to find a good subset of inputs/features?
* We need:
— A criterion for ranking good inputs/features
— Search procedure for finding a good set of features
« Feature selection process can be:
— Dependent on the learning task
* e.g. classification
« Selection of features affected by what we want to predict
— Independent of the learning task
 Unsupervised methods
» may lack the accuracy for classification/regression tasks
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Task-dependent feature selection

Assume:
 Classification problem:
— X —input vector, y - output

Objective: Find a subset of inputs/features that gives/preserves
most of the output prediction capabilities

Selection approaches:
« Filtering approaches

— Filter out features with small predictive potential

— done before classification; typically uses univariate analysis
* Wrapper approaches

— Select features that directly optimize the accuracy of the
multivariate classifier

« Embedded methods
— Feature selection and learning closely tied in the method
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Feature selection through filtering

* Assume:
— Classification problem: x — input vector, y - output
— Inputs in x or some fixed feature mappings ¢, (X)

* How to select the feature:
— Univariate analysis
* Pretend that only one variable, x,, exists
+ See how well it predicts the output y alone
— Example:
« differentially expressed features (or inputs)
» Good separation in binary (case/control settings)
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Differentially expressed features

« Scores for measuring the differential expression
— T-Test score (Baldi & Long)
« Based on the test that two groups come from the same
population 2

— Fisher Score Fisher (I) — /ui(+)2

— ,Ui(_)2
O + Gi(_)z
— AUROC score: Area under Receiver Operating
Characteristic curve
Problems:

— if many random features, and not many instances we can
learn from the features with a good differentially expressed
score must arise

— Techniques to reduce FDR (False discovery rate) and
FWER (Family wise error).
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Feature filtering

Other univariate scores:

- Correlation coefficients P& Y) =
— Measures linear dependences

* Mutual information

Cov(4. Y)
JVar (g, )Var (y)

6= NP6 =y =Dlos 5 BT

+ Univariate assumptions:

— Only one feature and its effect on y is incorporated in the
mutual information score

— Effects of two features on y are independent

» What to do if the combination of features gives the best
prediction?
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Feature selection: dependent features

Filtering with dependent features
« Let @ be acurrent set of features (starting from complete set)
» We can remove feature ¢, (x) from it when:

P(y| o\P) = P(y|e) forallvaluesof g,y
+ Repeat removals until the probabilities differ.

Problem: how to compute/estimate P(Y |@\@.), P(y|®) 2

Solution: make some simplifying assumption about the
underlying probabilistic model

» Example: use a Naive Bayes
« Advantage: speed, modularity, applied before classification
» Disadvantage: may not be as accurate
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Feature selection: wrappers

Wrapper approach:

« The feature selection is driven by the prediction accuracy of the
classifier (regressor) we actually want to built

How to find the appropriate feature set?
 For d binary features there are 29 different feature subsets
 ldea: Greedy search in the space of classifiers

— Gradually add features improving most the quality score

— Gradually remove features that effect the accuracy the least

— Score should reflect the accuracy of the classifier (error) and
also prevent overfit

« Standard way to measure the quality:
— Internal cross-validation (m-fold cross validation)
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Internal cross-validation

Split train set: to internal train and test sets

Internal train set: train different models (defined e.g. on
different subsets of features)

Internal test set/s: estimate the generalization error and
select the best model among possible models

Internal cross-validation (m-fold):
— Divide the train data into m equal partitions (of size N/m)

— Hold out one partition for validation, train the classifiers on
the rest of data

— Repeat such that every partition is held out once

— The estimate of the generalization error of the learner is the
mean of errors of on all partitions
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Feature selection: wrappers

» Greedy (forward) search:
— logistic regression model with features

Start with  p(y =1 x,w) = g(w,)

Choose feature X; with the best error (in the internal step)
Py =1|x,w) = g(w, + WX

Choose feature x;with the best error (in the internal step)
Py =1 X W) = g(W, +W,X; +W;X;)
Etc.
When to stop ?
Goal: Stop adding features when the error on the data stops
descreasing
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Embedded methods

» Feature selection + classification model learning done
together

* Embedded models:
— Regularized models

» Models of higher complexity are explicitly penalized
leading to ‘virtual’ removal of inputs from the model

* Regularized logistic/linear regression
 Support vector machines
— Optimization of margins penalizes nonzero weights
— CART/Decision trees
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Dimensionality reduction

« Is there a lower dimensional representation of the data
that captures well its characteristics?
* Assume:
— We have andata  {X,,X,,.., X} such that
X, = (X", X7,.., x°
— Assume the dimension d of the data point x is very large
— We want to analyze x
« Methods of analysis are sensitive to the dimensionality d
« Our goal:

— Find a lower dimensional representation of data of
dimension d’ <d
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Principal component analysis (PCA)

* Objective: We want to replace a high dimensional input with
a small set of features (obtained by combining inputs)
— Different from the feature subset selection !!!
+ PCA:

— A linear transformation of d dimensional input x to M
dimensional feature vector z such that M <d under
which the retained variance is maximal.

— Equivalently it is the linear projection for which the sum of
sguares reconstruction cost is minimized.
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PCA
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Principal component analysis (PCA)

PCA:

— linear transformation of a d dimensional input X to M
dimensional vector z such that M < d under which the
retained variance is maximal.

— Task independent

Fact:
— A vector x can be represented using a set of orthonormal
vectors u d
X=>zu,
i=1

— Leads to transformation of coordinates (from x to z using
u’s)
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PCA

Idea: replace d coordinates with M of Z; coordinates to
represent x. We want to find the subset M of basis vectors.

M d
X=>zu,+ > bu;
i=1 i=M+1

b. - constant and fixed

How to choose the best set of basis vectors?

— We want the subset that gives the best approximation of
data x in the dataset on average (we use least squares fit)

d
Error fordataentry x"  x"—X"= > (z]' —b)u,

Reconstruction error =M
1 N - 1 N d
Eu =—Z‘Xn—xn =—Z (Zin_bi)2
2 n=1 2 n=l i=M+1

CS 2750 Machine Learning

11



PCA

« Differentiate the error function with regard to all b, and
set equal to 0 we get:

_iN n __ TS —_i n
_NZ;‘Zi =u,'X x_NZx

» Then we can rewrite:

Zu Tu, > = Z(x —X)(X" =X)"

| M+1

 The error function is optimized When ba3|s vectors satisfy:
Zu; = A4U, Zﬂ
| M+1

The best M basis vectors: discard vectors with d-M smallest
eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector U; — is called a principal component
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PCA

» Once eigenvectors u; with largest eigenvalues are identified,

they are used to transform the original d-dimensional data to
M dimensions

* To find the “true” dimensionality of the data 4’ we can just

look at eigenvalues that contribute the most (small eigenvalues

are disregarded)

* Problem: PCA is a linear method. The “true” dimensionality
can be overestimated. There can be non-linear correlations.

» Modifications for nonlinearities: kernel PCA
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Dimensionality reduction with neural nets

« PCA s limited to linear dimensionality reduction
» To do non-linear reductions we can use neural nets

+ Auto-associative (or auto-encoder) network: a neural
network with the same inputs and outputs ( x )
X, X, X: X4

S

X, X, X; Xq

» The middle layer corresponds to the reduced dimensions
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Dimensionality reduction with neural nets

Error criterion:
1y3,d )
E=22 2 (e —x")
n=1 i=1

Error measure tries to recover the original data through limited
number of dimensions in the middle layer

Non-linearities modeled through
intermediate layers between

the middle layer and input/output
If no intermediate layers are used
the model replicates PCA
optimization through learning
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Latent variable models

Latent variables (s): Dimensionality k

Observed variables x: real valued vars
Dimensionality d
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Cooperative vector quantizer

s: k binary vars

Model:
Latent var s;:
~ Bernoulli distribution
parameter: m;

P(Si | 7Z'i) — 7Z-isi (1_7Z_i)1—si

x: dreal valued vars
Observable variables x:

~ Normal distribution V"\‘:ll Wi o Wy
parameters: W, W= 2
P(x]|s)=N(Ws,XZ
(X]s) = N( ) ", "

We assume ¥ =l
Joint for one instance of x and s:

P(x;5]©)=(27) "0 exp{— 21 > (X—Ws)' (x—v\/s)}ﬁ;,isi (L-7)&
o

i=1
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Other unsupervised methods

« Factor analysis (a latent variable model)
« Decompose signal into multiple Gaussian sources

X = As X is a linear combination of values for sources

s=WxX =A"X

* Independent component analysis:

— ldentify independent components/signals/sources in the
original data

— Non-Gaussian signals

X =As
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Multidimensional scaling

« Find a lower dimensional space projection such that the
distances among data points are preserved

» Used in visualization — d-diminensional data transformed to
3D or 2D

- Dissimilarities before projection &, ; =||x —x;|

* Objective: Optimize points and their coordinates by fitting the
dissimilarities afterwards

1 1 [ 2
ming, o, 0y 2 (%=1 =)
i<j
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