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Expectation Maximization (EM).
Mixtures of Gaussians.
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Learning probability distribution

Basic learning settings:
 Asetof random variables X={X;, X,,..., X}
« A model of the distribution over variables in X
with parameters ©
« Data D={D,D,,. Dy}
st D =(X,%,...X)
Objective: find parameters © that describe the data
Assumptions considered so far:
— Known structure and parameterizations
— Hidden variables
— Missing values
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Hidden variables

Modeling assumption:
Variables X={X, X,,.... X}
» We can add hidden variables — never observed in data
Why to add hidden variables?
« More flexibility in describing the distribution P(X)
« Smaller parameterization of P(X)

— New independences can be introduced via hidden

variables _ _
Example: Hidden cIaCss variable
« Latent variable models
— hidden classes (categories) P(X|C =)
X
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Naive Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of
parameters defining P(X)

Example:
+ Naive Bayes model with a hidden class variable

Hidden class variable

() C Attributes are independent
/g \X given the class
O
X, X, ... X,

 Useful in customer profiles
— Class value = type of customers
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Learning with hidden variables and
missing values: EM

Expectation maximization method
The key idea of the method:

Compute the parameter estimates iteratively by performing the
following two steps:

Two steps of the EM:

1. Expectation step. For all hidden and missing variables (and
their possible value assignments) calculate their expectations
for the current set of parameters ©'

2. Maximization step. Compute the new estimates of ® by
considering the expectations of the different value
completions

Stop when no improvement possible

CS 2750 Machine Learning

Gaussian mixture model

Assume we have the following data
Question: how to model its distribution?
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Gaussian mixture model

Idea: each group of data-points is covered by one Gaussian
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Mixture of Gaussians

» Density function for the Mixture of Gaussians model
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Gaussian mixture model

Probability of occurrence of a data point x

is modeled generatively as P(C)
k
p(x) = p(C =i)p(x|C =i) c
i=1
where p(X|C=1)
C=i
p(C =1) X

= probability of a data point coming
from class (group) C=i

p(X|C =10)= N(n;, X))
= class conditional density (modeled as a Gaussian)

forclassi
Special feature: C is hidden !!!!
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Generative classifier model

» Generative classifier model (recall QDA or LDA)
« Assume the class labels are known. The ML estimate is

N=>1
ra= class C
_ N,
T, =—"
N c=1 C=2
TR Y
I Ni J:Cy =i !
B, X n,,x,

E, = 20 —r)0 )’
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Gaussian mixture model

» In the Gaussian mixture Gaussians are not labeled

« We can apply EM algorithm:
— re-estimation based on the class posterior

= p(C, =i1%,0) = PE=HEOIPHIC =1OD
Zp(cl =u|®)p(x |C, =u,0)

Ni = Z h“ \ u=1
I\II Count replaced with the expected count
o =—r
N
- 1
;= W. Z hiIXI

ii :%Zhil (X —lli)(X,- _lli)T

CS 2750 Machine Learning

Gaussian mixture algorithm

« A special case:
a fixed covariance matrix for all hidden groups (classes)

« Algorithm:
Initialize means Mi for all classes i
Repeat two steps until no change in the means:
1. Compute the class posterior for each Gaussian and each
point (a kind of responsibility for a Gaussian for a point)
p(C, =i|®") p(X, |C| =i,®")

Zri: p(C, =u|®)p(x |C, =u,B")

Responsibility: hy =

2. Move the means of the Gaussians to the center of the data,

weighted by the responsibilities ih-.X.
New mean: n, ==L

Zhil

—
=t
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Gaussian mixture model. Gradient ascent.

A set of parameters

pP(C)
O = {71, 0 Ty sy bl | c
Assume unit variance terms and fixed priors
P(x|C =i)=(27)™? exp{_lnx_,,ti”z} p(x|C)
X
P(010)=[ T3 7 (2009~ Sl ~aaf'}
=1 i=1
1(®) = Zlog Z;z 2x)™? exp{——”x, ]| }
1=1 i=1
a(;(f) Z h, (X, — ) - very easy on-line update
i I=1
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EM versus gradient ascent

Gradient ascent EM N
N Z h;, <,
'ui(_'ui_'_azhil(xl_ﬂi) y2as <« =
1=1

N
> h
=1

Learning rate No learning rate

R R
-

Small pull towards distant Renormalized — big jump in the
uncovered data first step
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K-means approximation to EM

Mixture of Gaussians with the fixed covariance matrix:
* posterior measures the responsibility of a Gaussian for every point
p(CI =i|@®") p(xl | CI =i,®")

hil =
Z P(C, =u|®)p(x |C, =u,0")
u=1 N
. . h;, x
» Re-estimation of means: o, — .Z:;: Y
> hy
1=1

+ K- Means approximations
+ Only the closest Gaussian is made responsible for a point

h, =1 |Ifiis the closest Gaussian
h, =0 Otherwise

+ Results in moving the means of Gaussians to the center of the
data points it covered in the previous step
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K-means algorithm

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:

— Partition the data according to the current means (using
the similarity measure)

— Move the means to the center of the data in the current
partition

« Used frequently for clustering data
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