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Midterm exam

Midterm Monday, March 2, 2015

* In-class (75 minutes)

» closed book

» material covered by February 25, 2015
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Multilayer neural networks

Or another way of modeling nonlinearities
for regression and classification problems
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Classification with the linear model.

Logistic regression model defines a linear decision boundary
» Example: 2 classes (blue and red points)

Decision boundary

2.
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Linear decision boundary

* logistic regression model is not optimal, but not that bad
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When logistic regression fails?

» Example in which the logistic regression model fails
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Limitations of linear units.

 Logistic regression does not work for parity functions
- no linear decision boundary exists

Solution: a model of a non-linear decision boundary
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Extensions of simple linear units

« use feature (basis) functions to model nonlinearities

Linear regression Logistic regression

FO0 =Wy + 2 W) F(X) = 90w+ wg, ()

$;(x) -an arbitrary function of x
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Learning with extended linear units

Feature (basis) functions model nonlinearities

Linear regression Logistic regression
m m

f(X)=W0+ZWJ¢j(X) f(X):g(WO+ZWj¢j(X))

Important property:

» The same problem as learning of the weights for linear units , the
input has changed- but the weights are linear in the new input
Problem: too many weights to learn
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Multi-layered neural networks

An alternative way to introduce nonlinearities to
regression/classification models

Key idea: Cascade several simple neural models with
logistic units. Much like neuron connections.

Cell body or Soma
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Multilayer neural network

Also called a multilayer perceptron (MLP)
Cascades multiple logistic regression units

Example: (2 layer) classifier with non-linear decision boundaries
1

2,(2) -é p(y =1[x)

Input layer Hidden layer Output layer
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Multilayer neural network

* Models non-linearity through logistic regression units
» Can be applied to both regression and binary classification

problems
Input layer Hidden layer Output layer
. 1. regression
W oy N0 F69=Tbew)
7,()
Xl éo%‘
2
X, Qﬁ» classification

@)
" 2(1)0/ / ff(x)—p(y 1% w)

X4 option
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Multilayer neural network

* Non-linearities are modeled using multiple hidden logistic
regression units (organized in layers)

» The output layer determines whether it is a regression or a
binary classification problem

Output layer

Input layer Hidden layers regression
f(x) = f(x,w)
X, —
X2
) classification
X, /L 00 bty -tixm)

option
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Learning with MLP

* How to learn the parameters of the neural network?
» Gradient descent algorithm
— Weight updates based on the error: J(D,w)

W<« w-aV J(D,w)

* We need to compute gradients for weights in all units
* Can be computed in one backward sweep through the net 11!

P
<

» The process is called back-propagation
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Backpropagation

(k-1)-th level k-th level (k+1)-th level

x, (k1) XK X, (k +1)

J W,J(k)\zZ(k)-/;sj w (k1) z(k+l)/-\/-“"'§j
P S

x (k) - output of the unit i on level k
z;(k) - input to the sigmoid function on level k
w; ;(k) - weight between units j and i on levels (k-1) and k
7;(k) = W, o (k) + - w, ; (K)x; (k =2)
i
x; (k) = 9(z,(k))
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Backpropagation
Update weight w, ;(k) using a data point D ={< X,y >}
W (K) < w (K) —a—— 0 J(D,w)

ow, (k)
0
Let o)== (k)J(D ;W)
) 8 _0J(D,w) oz,(k) B
Then: awi,j(k)J(D’W)_ 22,9 awi‘j(k)—c?i(k)xj(k 1)

S.t. 5,(k) is computed fromx; (k) and the next layer &, (k +1)
i (k) = {Z S (k+Dw;; (k +1)}Xi (k)@= x; (k)
|
Last unit (is the same as for the regular linear units):

6, (K) =—(y, — f(x,,w))
It is the same for the classification with the log-likelihood
measure of fit and linear regression with least-squares error!!!
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Learning with MLP

* Online gradient descent algorithm

— Weight update:
0
Wi,j (k) <« Wi,j (k) - W‘]online (Du 1W)
0 ‘Jonline (Du ,W) — 0J online (Du ’W) azi (k) — 5i (k)Xj (k _1)
ow; ; (k) oz;(k)  ow;;(k)

w; ;(K) <= w; (k) —ad,;(k)x;(k —1)

x;(k-1) - j-th output of the (k-1) layer

0;(k) - derivative computed via backpropagation
a - alearning rate
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Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights w; ; (k)
for i=1:1: number of iterations
do select a data point D, =<x,y> from D

set learning rate «
compute outputs  X; (k) for each unit
compute derivatives J; (k) via backpropagation
update all weights (in parallel)

w; ; (K) <= w; ; (k) —ad,;(k)x;(k —1)

end for
return weights w
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Xor Example.

« linear decision boundary does not exist

0.5F
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Xor example. Linear unit

Y
sESEeTToT T Ty
e N O WL Wy
TSR RS LS IRRET R Tl
L
R
5

CS 2750 Machine Learning

10



Xor example.

Neural network with 2 hidden units

Qutput
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Xor example.

Neural network with 10 hidden units

Qutput
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MLP in practice

» Optical character recognition — digits 20x20

— Automatic sorting of mails

— 5 layer network with multiple output functions

10 outputs (0,1,...9)

20x20 =400 inputs

layer

5
4

3

[EEN

Neurons

10
300

1200

784
3136

Weights

3000
1200

50000

3136
78400
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