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Multilayer neural networks

CS 2750 Machine Learning

Midterm exam

Midterm Monday, March 2, 2015

• In-class (75 minutes) 

• closed book 

• material covered by February 25, 2015
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Multilayer neural networks

Or another way of modeling nonlinearities
for regression and classification problems

CS 2750 Machine Learning

Classification with the linear model.   

Logistic regression model defines a linear decision boundary

• Example: 2 classes (blue and red points)
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Linear decision boundary

• logistic regression model is not optimal, but not that bad
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When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of linear units. 
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• Logistic regression does not work for parity functions
- no linear decision boundary exists

Solution: a model of a non-linear decision boundary
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Extensions of simple linear units
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• use feature (basis) functions to model nonlinearities
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Learning with extended linear units
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Feature (basis) functions model nonlinearities

Important property:
• The same problem as learning of the weights for linear units , the 
input has changed– but the weights are linear in the new input
Problem: too many weights to learn
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Multi-layered neural networks

• An alternative way to introduce nonlinearities to 
regression/classification models

• Key idea: Cascade several simple neural models with 
logistic units. Much like neuron connections.
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Multilayer neural network

Hidden layer Output layerInput layer

Cascades multiple logistic regression units

Also called a multilayer perceptron (MLP)
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Example: (2 layer) classifier with non-linear decision boundaries
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Multilayer neural network

• Models non-linearity through logistic regression units

• Can be applied to both regression and binary classification

problems 
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Multilayer neural network

• Non-linearities are modeled using multiple hidden logistic 
regression units (organized in layers)

• The output layer determines whether it is a regression or a 
binary classification problem
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Learning with MLP

• How to learn the parameters of the neural network?

• Gradient descent algorithm

– Weight updates based on the error:

• We need to compute gradients for weights in all units

• Can be computed in one backward sweep through the net !!!

• The process is called back-propagation
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Backpropagation
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Backpropagation
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Last unit (is the same as for the regular linear units):

It is the same for the classification with the log-likelihood
measure of fit and linear regression with least-squares error!!!
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Learning with MLP

• Online gradient descent algorithm

– Weight update:
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- j-th output of the (k-1) layer

- derivative computed via backpropagation
 - a learning rate
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Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)

Initialize all weights

for i=1:1: number of iterations

do      select a data point Du=<x,y> from D

set  learning rate 

compute outputs                for each unit

compute derivatives           via backpropagation 

update all weights (in parallel)

end for

return weights w
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Xor Example. 
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• linear decision boundary does not exist

CS 2750 Machine Learning

Xor example. Linear unit
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Xor example.  
Neural network with  2 hidden units

CS 2750 Machine Learning

Xor example. 
Neural network with 10 hidden units
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MLP in practice

• Optical character recognition – digits 20x20

– Automatic sorting of mails

– 5 layer network with multiple output functions

10 outputs (0,1,…9)

…

20x20 = 400  inputs

5          10                   3000

4        300                   1200

3       1200                50000

2         784                  3136

1        3136               78400

layer      Neurons        Weights


