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Lecture 10

* SVMs for regression
* Non-parametric/instance
based classification method
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Soft-margin SVM

» Allows some flexibility on crossing the separating hyperplane
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Soft-margin SVM

minimize ||w||2 /2+C Zn: ¢,
i=1

wix, +w,>1-¢&  for y; = +1
wix, +W, <-1+& for y; =—1
£>0

+ Rewrite & =max [0, 1-y,(w'x;+wy)| in |w[ /2+ci 3
i=1

Regularization
penalty Hinge loss
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Classification learning

e General form:

min, L(w,D)+AQ(W)

Loss Regularization
function penalty

e Loss functions:

— Negative loglikelihood (used in the LR)
— Hinge loss (used in SVM)
* Regularization terms:
— L1 (lasso)
— L2 (ridge)
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Support vector machines

The decision boundary:

AT A
W X+W, = E aiyi+WO=0
ieSV

The decision:

= sign[Zo?iy+w0}
(!!): ieSV

Decision on a new x requires to compute the inner product
between the examples (x iT X)

Similarly, the optimization depends on  (x,"x )

n 1 n
e =2 ‘EZ“i“inyj
i=1 i,j=1
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Nonlinear case

The linear case requires to compute (xiT X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = ¢(x)
It is possible to use SVM formalism on feature vectors

o(x)" o(x")
Kernel function

K(xx")=9(x) o(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!
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Kernel function example

+ Assume x =[x,,x,]" and a feature mapping that maps the input
into a quadratic feature set

X = @(x) :[xf,xf,ﬁxlxz,ﬁxl,ﬁxz,lf

» Kernel function for the feature space:

K(x',x) = o(x") o(x)

XEXTHX XD 2K, X, X' X', +2X, X' +2X, X', +1
= (X, X', +X, X', +1)?
=1+ (x"x")’

* The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Nonlinear extension
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Feature space

Input space

Kernel trick

» Replace the inner product with a kernel

» A well chosen kernel leads to an efficient computation
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Kernel functions

Linear kernel

K(x,x')=x"x'
Polynomial kernel
K(x,x') = [1 + XTX'] X
Radial basis kernel

K(x,x") =exp {— %”x - x'||2}
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Kernels

Kernels define a similarity measure :
— define a distance in between two objects
Design criteria: we want kernels to be

— valid — Satisfy Mercer condition of positive semi-
definiteness

— good — embody the “true similarity” between objects

appropriate — generalize well

efficient — the computation of K(x,x’) is feasible
» NP-hard problems abound with graphs
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Kernels

Research have proposed kernels for comparison of variety of
objects:

— Strings
— Trees

— Graphs
Cool thing:

— SVM algorithm can be now applied to classify a variety of
objects
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Support vector machine for regression

Regression = find a function that fits the data.
» A data point may be wrong due to the noise

Idea: Error from points which are close should count as a valid
noise

* Line should be influenced by the real data not the noise.
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Linear model

* Training data:

XY ) (X)), X e R,y eR

* Our goal is to find a function f(x) that has at most ¢ deviation
from the actually obtained target for all the training data.

f(x)=w'x+b=(w, x)+D
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Linear model

Linear function:
f(x)=w'x+b=(w,x)+b
We want a function that is:
* flat: means that one seeks small w
+ all data points are within its € neighborhood
The problem can be formulated as a convex optimization
problem:
C e 1 2
minimize 5 ||W||
y,—(w,,x;)—b<e¢

1270

subject to
(Wi, X)+b-y, <¢

All data points are assumed to be in the & neighborhood
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Linear model

* Real data: not all data points always fall into the ¢
neighborhood

f(x)=w'x+b=(w, x)+b
+ Idea: penalize points that fall outside the & neighborhood
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Linear model

Linear function:
f(x)=w'x+b=(w,x)+b
Idea: penalize points that fall outside the € neighborhood

!
minimize ;—”W”2 +C Z (& +&0)
i1

IN

yi =W, X)) -b<e+

IA

subject to (W, X)+b—-y <&+ &

giaéi* 20
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Linear model

+E

¥

5

_{O for |§|S5

|§ | — & otherwise

e-intensive loss function
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Optimization
Lagrangian that solves the optimization problem
L= %(W, W) + Cilzl(fi +E)
—iai(g—fi — Y, (W, X, +b)—|2ai*(g+§i* +y, —(W,%)—b)
i1 o1
- izl_ll(ﬂifi +1,6)

Subjectto @, ,75;,7 >0

Primal variables w,b, & < i*
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Optimization
Derivatives with respect to primal variables

oL '

P (ai*_ai):O
&

oL Lo

— =W - a, —a,)x, =0
ow ;(I |)|
%:C_ai_nl _0
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Optimization

L :%<W,w>+gC§i +§cg:

—Zaig—gagi —Zaiyi —izl;ai<a),xi>+izl;aib
~Yae-Yag -Yay s Yale.x)+Xab
—gmé—giﬁ
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Optimization

1 |
L:E<W9W>+;§i C—m —a)+

—0(07;7, —a,=0)

Zf(C =)= Z(a +3;)e Z(a +37)Y,

=0(C-{"-a{"=0)

—Z(a a N, x >+Z(a —a,)b

=(w,w)( o= Z(a +3;)%) _O(Z(a —8;)=0)
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Optimization
L = -%(W,W)—ZI: (a, +a))e —ZI: (a;+a7)y;

Maximize the dual
Inner product

L(a,a") = %Z (a, -a)(a, —a’;)/

—le(ai+a:)5_zll (a,+a;)y,

le(ai_ai*)zo
€[0.C]

subject to
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SVM solution

oL !
2 —w— a’ —a)x, =0
ow izz;( )
|
w :Z(al_al)x|
o1
We can get: Inner product

~

f(x)=2|:(ai—ai*)+b

at the optimal solution the Lagrange multipliers
are non-zero only for points outside the & band.
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Nonparametric vs Parametric Methods

Nonparametric models:

* More flexibility — no parametric model is needed

* But require storing the entire dataset

» and the computation is performed with all data examples.

Parametric models:

* Once fitted, only parameters need to be stored

* They are much more efficient in terms of computation
» But the model needs to be picked in advance
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Non-parametric Classification methods

Given a data set with N, data points from class C,
and >, Nk = N, we have

() = 7
PX) =7y
and correspondingly

_ Kk

Since p(Cr) = Ni./N, Bayes’ theorem gives

_ PxC)p(Cr) _ K
p(Celx) = p(x) K’
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K-Nearest-Neighbours for Classification

CS 2750 Machine Learning

13



Nonparametric kernel-based classification

* Kernel function: k(x,x’)
— Models similarity between x, x’

— Example: Gaussian kernel we used in the kernel density

estimation
, 1 (x—=x")?
k(X, X ) = WGXPK—TJ

1 N
p(x) = WZ K (X, X;)
i=1
* Kernel for classification

D k(x,x")

x"y'=Cy

p(y=Ck|X)=W
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