CS 2750 Machine Learning Lecture 9

Classification learning II

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Logistic regression model

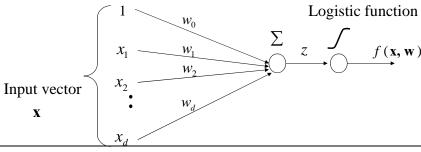
- Defines a linear decision boundary
- Discriminant functions:

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$

$$g_1(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$
 $g_0(\mathbf{x}) = 1 - g(\mathbf{w}^T \mathbf{x})$

• where $g(z) = 1/(1 + e^{-z})$ - is a logistic function

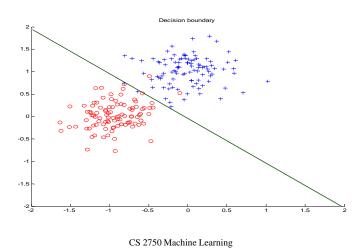
$$f(\mathbf{x}, \mathbf{w}) = g_1(\mathbf{w}^T \mathbf{x}) = g(\mathbf{w}^T \mathbf{x})$$



Logistic regression model. Decision boundary

· LR defines a linear decision boundary

Example: 2 classes (blue and red points)



Logistic regression: parameter learning

· Log likelihood

$$l(D, \mathbf{w}) = \sum_{i=1}^{n} y_{i} \log \mu_{i} + (1 - y_{i}) \log(1 - \mu_{i})$$

• Derivatives of the loglikelihood

$$-\frac{\partial}{\partial w_{j}}l(D, \mathbf{w}) = \sum_{i=1}^{n} -x_{i,j}(y_{i} - g(z_{i}))$$

$$\nabla_{\mathbf{w}} - l(D, \mathbf{w}) = \sum_{i=1}^{n} -\mathbf{x}_{i}(y_{i} - g(\mathbf{w}^{T}\mathbf{x}_{i})) = \sum_{i=1}^{n} -\mathbf{x}_{i}(y_{i} - f(\mathbf{w}, \mathbf{x}_{i}))$$

• Gradient descent:

$$\mathbf{w}^{(k)} \leftarrow \mathbf{w}^{(k-1)} - \alpha(k) \nabla_{\mathbf{w}} [-l(D, \mathbf{w})] |_{\mathbf{w}^{(k-1)}}$$
$$\mathbf{w}^{(k)} \leftarrow \mathbf{w}^{(k-1)} + \alpha(k) \sum_{i=1}^{n} [y_i - f(\mathbf{w}^{(k-1)}, \mathbf{x}_i)] \mathbf{x}_i$$

Generative approach to classification

Idea:

- 1. Represent and learn the distribution $p(\mathbf{x}, y)$
- 2. Use it to define probabilistic discriminant functions

E.g.
$$g_o(\mathbf{x}) = p(y = 0 | \mathbf{x})$$
 $g_1(\mathbf{x}) = p(y = 1 | \mathbf{x})$

Typical model $p(\mathbf{x}, y) = p(\mathbf{x} | y) p(y)$

- $p(\mathbf{x} \mid y) = \mathbf{Class\text{-}conditional\ distributions\ (densities)}$ binary classification: two class-conditional distributions $p(\mathbf{x} \mid y = 0)$ $p(\mathbf{x} \mid y = 1)$
- p(y) =Priors on classes probability of class y binary classification: Bernoulli distribution

$$p(y = 0) + p(y = 1) = 1$$

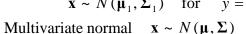
CS 2750 Machine Learning

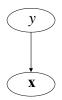
Quadratic discriminant analysis (QDA)

Model:

- Class-conditional distributions
 - multivariate normal distributions

$$\mathbf{x} \sim N(\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0)$$
 for $y = 0$
 $\mathbf{x} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$ for $y = 1$



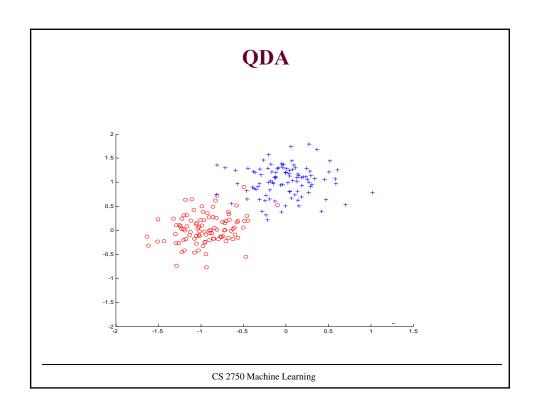


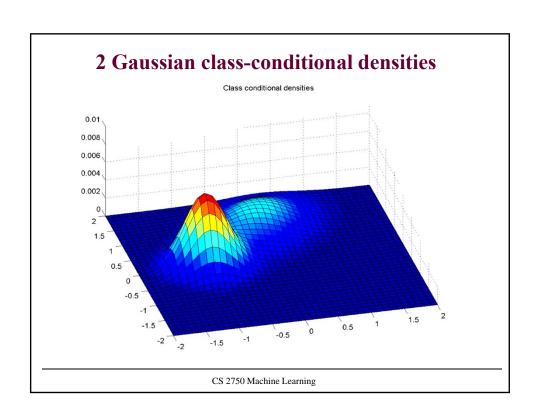
X

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

- Priors on classes (class 0,1) y ~ Bernoulli
 - Bernoulli distribution

$$p(y,\theta) = \theta^{y} (1-\theta)^{1-y}$$
 $y \in \{0,1\}$





QDA: Making class decision

Basically we need to design discriminant functions

Two possible choices:

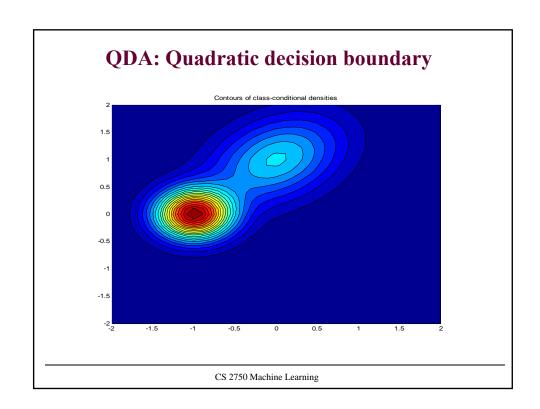
• Likelihood of data – choose the class (Gaussian) that explains the input data (x) better (likelihood of the data)

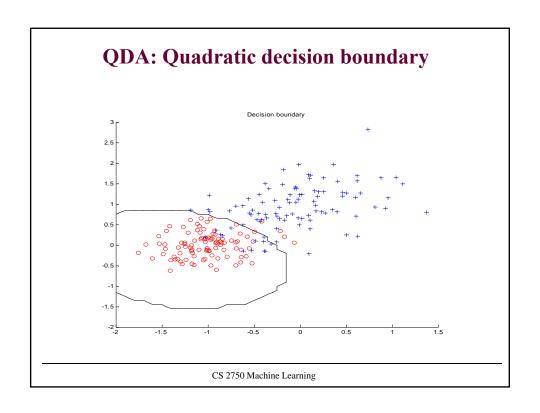
$$\underbrace{p(\mathbf{x} \mid \mu_1, \Sigma_1)}_{g_1(\mathbf{x})} > \underbrace{p(\mathbf{x} \mid \mu_0, \Sigma_0)}_{g_0(\mathbf{x})} \quad \text{then } y=1$$
 else $y=0$

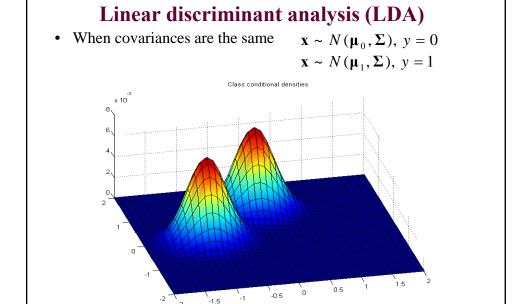
Posterior of a class – choose the class with better posterior probability

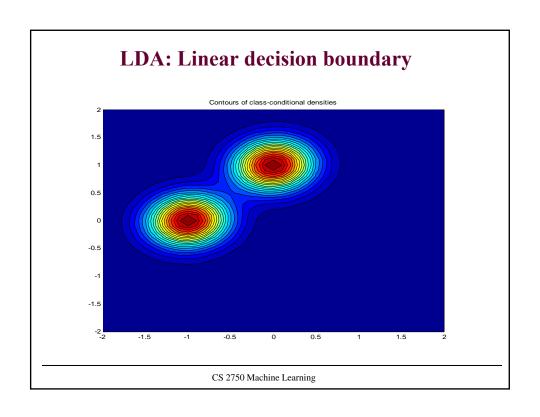
$$p(y=1 \mid \mathbf{x}) > p(y=0 \mid \mathbf{x})$$
 then $y=1$
else $y=0$

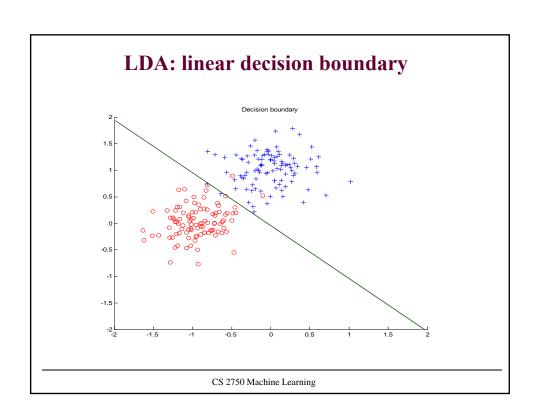
$$p(y=1 \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y=1)}{p(\mathbf{x} \mid \mu_0, \Sigma_0) p(y=0) + p(\mathbf{x} \mid \mu_1, \Sigma_1) p(y=1)}$$











Generative classification models

Idea:

- 1. Represent and learn the distribution $p(\mathbf{x}, y)$
- 2. Use it to define probabilistic discriminant functions

E.g.
$$g_{o}(\mathbf{x}) = p(y = 0 | \mathbf{x})$$
 $g_{1}(\mathbf{x}) = p(y = 1 | \mathbf{x})$

Typical model $p(\mathbf{x}, y) = p(\mathbf{x} | y) p(y)$

- $p(\mathbf{x} \mid y) =$ Class-conditional distributions (densities) binary classification: two class-conditional distributions $p(\mathbf{x} \mid y = 0)$ $p(\mathbf{x} \mid y = 1)$
- p(y) = Priors on classes probability of class y binary classification: Bernoulli distribution

$$p(y = 0) + p(y = 1) = 1$$

CS 2750 Machine Learning

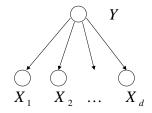
Naïve Bayes classifier

- A generative classifier model with an additional simplifying assumption:
 - All input attributes are conditionally independent of each other given the class.

So we have:

$$p(\mathbf{x}, y) = p(\mathbf{x} \mid y) p(y)$$

$$p(\mathbf{x} \mid y) = \prod_{i=1}^{d} p(x_i \mid y)$$



X

Learning parameters of the model

Much simpler density estimation problems

• We need to learn:

$$p(\mathbf{x} \mid y = 0)$$
 and $p(\mathbf{x} \mid y = 1)$ and $p(y)$

 Because of the assumption of the conditional independence we need to learn:

for every variable i: $p(x_i | y = 0)$ and $p(x_i | y = 1)$

- Much easier if the number of input attributes is large
- Also, the model gives us a flexibility to represent input attributes different of different forms !!!
- E.g. one attribute can be modeled using the Bernoulli, the other as Gaussian density, or as a Poisson distribution

CS 2750 Machine Learning

Making a class decision for the Naïve Bayes

Discriminant functions

• Likelihood of data – choose the class that explains the input data (x) better (likelihood of the data)

$$\underbrace{\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i})}_{g_1(\mathbf{x})} > \underbrace{\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i})}_{g_0(\mathbf{x})} \qquad \text{then } y=1 \\
\text{else } y=0$$

• Posterior of a class – choose the class with better posterior probability $p(y = 1 | \mathbf{x}) > p(y = 0 | \mathbf{x})$ then y=1 else y=0

$$p(y=1 \mid \mathbf{x}) = \frac{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i})\right) p(y=1)}{\left(\prod_{i=1}^{d} p(x_i \mid \Theta_{1,i})\right) p(y=0) + \left(\prod_{i=1}^{d} p(x_i \mid \Theta_{2,i})\right) p(y=1)}$$

Back to logistic regression

- Two models with linear decision boundaries:
 - Logistic regression
 - Generative model with 2 Gaussians with the same covariance matrices

$$x \sim N(\mu_0, \Sigma)$$
 for $y = 0$
 $x \sim N(\mu_1, \Sigma)$ for $y = 1$

- Two models are related !!!
 - When we have 2 Gaussians with the same covariance matrix the probability of y given x has the form of a logistic regression model!!!

$$p(y = 1 \mid \mathbf{x}, \boldsymbol{\mu}_0, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) = g(\mathbf{w}^T \mathbf{x})$$

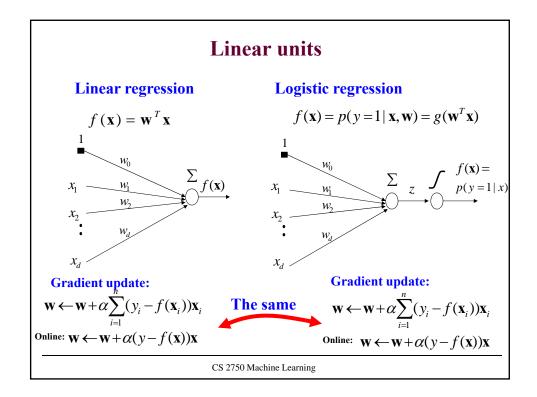
CS 2750 Machine Learning

When is the logistic regression model correct?

• Members of the exponential family can be often more naturally described as

$$f(\mathbf{x} \mid \mathbf{\theta}, \mathbf{\phi}) = h(x, \mathbf{\phi}) \exp \left\{ \frac{\mathbf{\theta}^T \mathbf{x} - A(\mathbf{\theta})}{a(\mathbf{\phi})} \right\}$$

- $\boldsymbol{\theta}$ A location parameter $\boldsymbol{\phi}$ A scale parameter
- Claim: A logistic regression is a correct model when class conditional densities are from the same distribution in the exponential family and have the same scale factor φ
- Very powerful result !!!!
 - We can represent posteriors of many distributions with the same small network



Gradient-based learning

- The same simple gradient update rule derived for both the linear and logistic regression models
- Where the magic comes from?
- Under the **log-likelihood** measure the function models and the models for the output selection fit together:

Generalized linear models (GLIM)

Assumptions:

• The conditional mean (expectation) is:

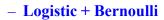
$$\mu = f(\mathbf{w}^T \mathbf{x})$$

- Where f(.) is a response function

• Output y is characterized by an exponential family distribution with a conditional mean μ

Examples:

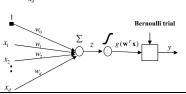
- Linear model + Gaussian noise $y = \mathbf{w}^T \mathbf{x} + \varepsilon \quad \varepsilon \sim N(0, \sigma^2)$



$$y \approx \text{Bernoulli}(\theta)$$

$$\theta = g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

CS 2750 Machine Learning



Generalized linear models

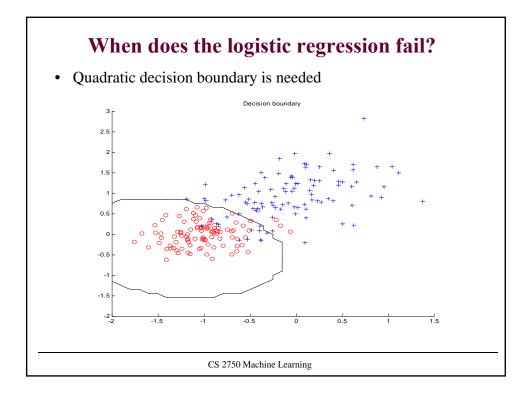
- A canonical response functions f(.):
 - encoded in the distribution

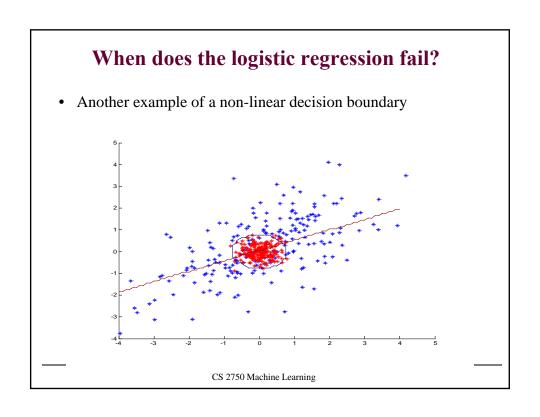
$$p(\mathbf{x} \mid \boldsymbol{\theta}, \boldsymbol{\varphi}) = h(x, \boldsymbol{\varphi}) \exp \left\{ \frac{\boldsymbol{\theta}^T \mathbf{x} - A(\boldsymbol{\theta})}{a(\boldsymbol{\varphi})} \right\}$$

- Leads to a simple gradient form
- Example: Bernoulli distribution

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1 - x} = \exp\left\{\log\left(\frac{\mu}{1 - \mu}\right)x + \log(1 - \mu)\right\}$$
$$\theta = \log\left(\frac{\mu}{1 - \mu}\right) \qquad \mu = \frac{1}{1 + e^{-\theta}}$$

Logistic function matches the Bernoulli





Non-linear extension of logistic regression

- use feature (basis) functions to model nonlinearities
 - the same trick as used for the linear regression

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x})$$

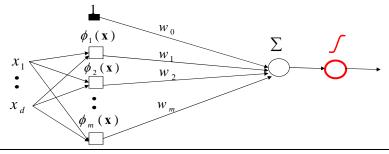
Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x})$$

$$Logistic regression$$

$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}))$$

 $\phi_j(\mathbf{x})$ - an arbitrary function of \mathbf{x}



CS 2750 Machine Learning

Evaluation of classifiers

Evaluation

For any data set we use to test the classification model on we can build a **confusion matrix:**

- Counts of examples with:
- class label ω_i that are classified with a label α_i

target

predict

	$\omega = 1$	$\omega = 0$
$\alpha = 1$	140	17
$\alpha = 0$	20	54

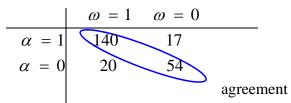
CS 2750 Machine Learning

Evaluation

For any data set we use to test the model we can build a **confusion matrix:**

target

predict



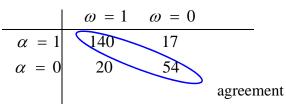
Error: ?

Evaluation

For any data set we use to test the model we can build a confusion matrix:

target

predict



Error: = 37/231

Accuracy = 1- Error = 194/231

CS 2750 Machine Learning

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

target

predict

$$\begin{array}{c|cccc} & \omega = 1 & \omega = 0 \\ \hline \alpha = 1 & TP & FP \\ \alpha = 0 & FN & TN \end{array}$$

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)

Additional statistics

- Sensitivity (recall) $SENS = \frac{TP}{TP + FN}$
- Specificity $SPEC = \frac{TN}{TN + FP}$
- Positive predictive value (precision)

$$PPT = \frac{TP}{TP + FP}$$

• Negative predictive value

$$NPV = \frac{TN}{TN + FN}$$

CS 2750 Machine Learning

Binary classification: additional statistics

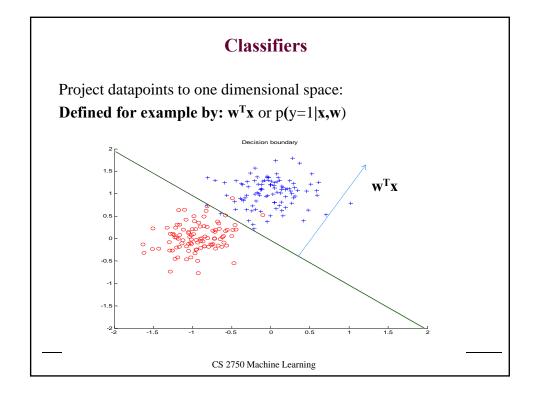
Confusion matrix

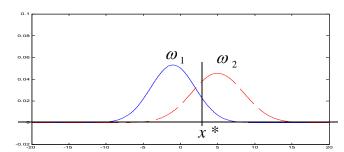
target

		1	0	
predict	1	140	10	PPV=140/150
	0	20	180	NPV = 180/200
•		SENS=140/160	<i>SPEC</i> =180/190	

Row and column quantities:

- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)

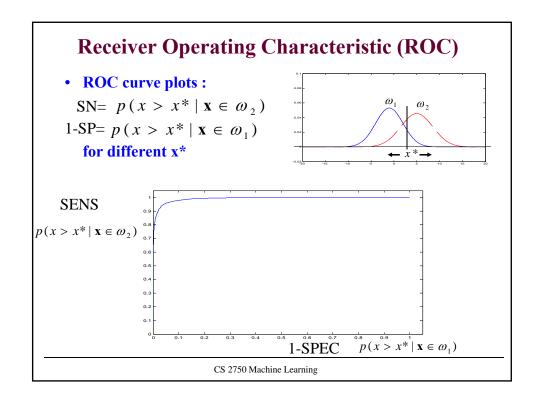


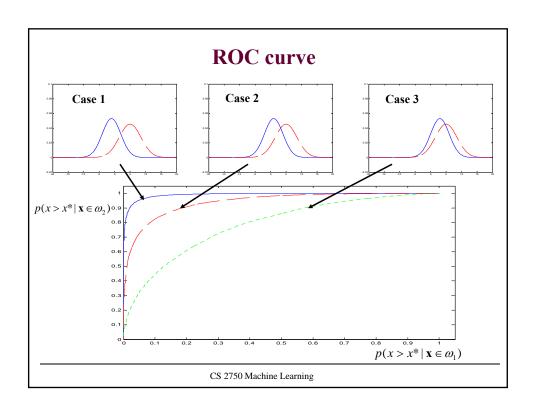


- Probabilities:
 - SENS
 - SPEC

$$p(x > x^* \mid \mathbf{x} \in \omega_2)$$

$$p(x < x^* \mid \mathbf{x} \in \omega_1)$$





Receiver operating characteristic

• ROC

 shows the discriminability between the two classes under different decision biases

Decision bias

- can be changed using different loss function

• Quality of a classification model:

- Area under the ROC
- Best value 1, worst (no discriminability): 0.5