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Announcements

Homework 1:
* due on Thursday, January 23 before the class

You should submit:
* A hardcopy of the report (before the lecture)
* Programs (if we ask for them) in electronic form

— Instructions for program submissions are on the course
web site
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Outline

Outline:

* Density estimation:

— Maximum likelihood (ML)

— Bayesian parameter estimates
- MAP

Bernoulli distribution

Binomial distribution

Multinomial distribution

Normal distribution
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Density estimation

Density estimation: is an unsupervised learning problem
* Goal: Learn relations among attributes in the data

Data: D={D,,D,,..,D,}
D, =x; a vector of attribute values
Attributes:
» modeled by random variables X={X;, X,,..., X } with
— Continuous or discrete valued variables

Density estimation: learn the underlying probability
distribution: p(X) = p(X,, X,,...,X,;) from D

CS 2750 Machine Learning




Density estimation

Data: p ={D,,D,,..,.D.}
D, =x, a vector of attribute values

Objective: estimate the underlying probability distribution over
variables X , p(X), using examplesin D

true distribution estimate
n samples )

p(X) D={D,,D,,..,D,} p(X)

Standard (iid) assumptions: Samples
e are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ©
p(X]0)

» Example: mean and covariances of a multivariate normal

» Estimation: find parameters ® describing data D

Non-parametric

» The model of the distribution utilizes all examples in D

» As if all examples were parameters of the distribution

» Examples: Nearest-neighbor
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
* Asetof random variables X={X,, X,,..., X}
* A model of the distribution over variables in X
with parameters @ : p(X|0)

e Data D={D,D,,.,D,}

Objective: find parameters ® such that p(X|®) fits data D
the best
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Parameter estimation

* Maximum likelihood (ML)
maximize P(D|®,¢)
— yields: one set of parameters G,
— the target distribution is approximated as:
FA)(X) = p(X | ®ML)
* Bayesian parameter estimation
— uses the posterior distribution over possible parameters

0(@|D,&) = PL10.5)pO]c)

p(D[4)
— Yields: all possible settings of ©® (and their “weights”)

— The target distribution is approximated as:
B(X) = p(X|D) = [ p(X |©)p(® | D,£)dO
(0]
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Parameter estimation

Other possible criteria:
* Maximum a posteriori probability (MAP)
maximize P(@|D,¢) (mode of the posterior)
— Yields: one set of parameters ®M AP
— Approximation:
ﬁ(X) = p(X | GMAP)
* Expected value of the parameter
0= E(®) (mean of the posterior)
— Expectation taken with regard to posterior P(® | D, &)
— Yields: one set of parameters
— Approximation: A
p(X) = p(X|O)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes X, such that
*head x =1

o tail X =0

Model: probability of ahead &
probability of atail ~ (1-6)
Objective: R
We would like to estimate the probability of a head ¢
from data
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Parameter estimation. Example.

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your estimate of the probability of a head ?

0=?
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Parameter estimation. Example

» Assume the unknown and possibly biased coin
* Probability of the head is &
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate
§-_06
25
This is the maximum likelihood estimate of the parameter &
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Probability of an outcome

Data: D asequence of outcomes X such that
* head x; =1
e tail X =0
Model: probability of ahead €
probability of atail  (1-6)

Assume: we know the probability &
Probability of an outcome of a coin flip X

P(x,|6)=6(1—-60)"") <= Bernoulli distribution
— Combines the probability of a head and a tail
— So that X; isgoing to pick its correct probability

- Gives @ for x =1
— Gives (1-6) for x. =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
e head X =1
* tail X =0
Model: probability of ahead @
probability of atail ~ (1-6)
Assume: a sequence of independent coin flips

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|8)="7
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail ~ (1-6)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|#)=060(1-60)6(1-6)6O
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

e head X =1

* tail X =0
Model: probability of ahead @

probability of atail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|8)=00(1-0)0(1-0)6

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail ~ (1-6)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|#)=66(1-60)0(1-6)6
6
P(DIo)=]]o"@-o)"

i=1
Can be rewritten using the Bernoulli distribution:
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The goodness of fit to the data

Learning: we do not know the value of the parameter &
Our learning goal:

» Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

P(D|6)= H 6% (1-0)4

Intuition:
» more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data
fit :

Error (D,0) =-P(D |8)
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Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x; such that
* head x =1
. tail X; =0
Model: probability of ahead &
probability of atail  (1-6)
Objective:
We would like to estimate the probability of a head 0

Probability of an outcome X;
P(x,|0)=60"{1- 9)(1‘Xi) Bernoulli distribution
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