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Ensemble methods:  
Mixtures of experts

CS 2750 Machine Learning

Reviewing Decision trees

• An approach to classification that:

– Partitions the input space to regions

– Classifies independently in every region
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Decision trees

• The partitioning idea is used in the decision tree model:

– Split the space recursively according to inputs in x

– Classify (assign class label) at the bottom of the tree
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Decision tree learning

• Greedy learning algorithm:

Repeat until no or small improvement in the purity

– Find the attribute with the highest gain

– Add the attribute to the tree and split the set accordingly

• Builds the tree in the top-down fashion

– Gradually expands the leaves of the partially built tree

• The method is greedy

– It looks at a single attribute and gain in each step

– May fail when the combination of attributes is needed to  
improve the purity (parity functions)
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Limitations of Decision trees

• Greedy learning methods: a combination of two or more 
attributes improves the impurity

• Rectangular regions
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CS 2750 Machine Learning

Mixture of experts model

• Ensamble methods:

– Use a combination of simpler learners/model to improve 
their predictions

• Mixture of expert model:

– Different input regions covered with different learners

– A “soft” switching between learners

• Mixture of experts

Expert = learner

x
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Mixture of experts model

• Gating network : decides what expert to use
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Learning mixture of experts

• Learning consists of two tasks:
– Learn the parameters of individual expert networks
– Learn the parameters of the gating (switching) network

• Decides where to make a split
• Assume: gating functions give probabilities

• Based on the probability we partition the space
– partitions belongs to different experts 

• How to model the gating network? 
– A multi-way classifier model:

• softmax model
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Learning mixture of experts

• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of  y (linear regression – assume errors for different 
experts are normally distributed with the same variance)
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CS 2750 Machine Learning

Learning mixture of experts

Learning of parameters of expert models: 

On-line update rule for parameters        of expert i

– If we know the expert that is responsible for x

– If we do not know the expert
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Learning mixtures of experts

Learning of parameters of the gating/switching network:

• On-line learning of gating network  parameters

• The learning with conditional mixtures can be extended to 
learning of parameters of an arbitrary expert network

– e.g. logistic regression, multilayer neural network
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Learning mixture of experts

EM algorithm for learning the mixture components

Algorithm:

Initialize parameters

Repeat 

Set 

1. Expectation step

2. Maximization step

until  no or small improvement in  

– Hidden variables are identities of expert networks 
responsible for (x,y) data points 
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EM for Learning mixture of experts

• Assume we have a set of linear experts

• Assume a softmax gating network 

• Q function to optimize

• Assume:

– indexes different data points

– an indicator variable for the data point l to be covered  
by an expert i
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Learning mixture of experts with EM

• Assume:

– indexes different data points

– an indicator variable for data point l and expert i
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EM for learning the mixture of experts

• The maximization step boils down to the problem that is 
equivalent to the problem of  finding the  ML estimates of the 
parameters of the expert and gating networks

• Note that any optimization technique can be applied in this 
step
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Learning mixture of experts 

• Note that we can use different expert and gating models

• For example:

– Experts: logistic regression models

– Gating network: a generative latent variable model 

• Likelihood of  y: 
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Hierarchical mixture of experts

• Mixture of experts: define a probabilistic split

• The idea can be extended to a hierarchy of experts (a kind of 
a probabilistic decision tree)
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Hierarchical mixture model

An output is conditioned (gated) on multiple mixture levels

• Define

• Then
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- Mixture model is a kind of soft decision tree model
- with a fixed tree structure !!
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Hierarchical mixture of experts

• Multiple levels of probabilistic gating functions

• Multiple levels of responsibilities

• How they are related?
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Hierarchical mixture of experts

• Responsibility for the top layer

• But                             is computed while computing

• General algorithm:

– Downward sweep; calculate

– Upward sweep; calculate
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On-line learning

• Assume linear experts

• Gradients (vector form):

• Again: can it can be extended to different expert networks
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