CS 2750 Machine Learning Lecture 19

Dimensionality reduction Feature selection

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Dimensionality reduction. Motivation.

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
 - We have an data $\{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_N}\}$ such that $\mathbf{x_i} = (x_i^1, x_i^2, ..., x_i^d)$
 - Assume the dimension d of the data point x is very large
 - We want to analyze x
- Methods of analysis are sensitive to the dimensionality d
- Our goal: Find a lower dimensional representation of data
- Two learning problems:
 - supervised
 - unsupervised

Dimensionality reduction for classification

- Classification problem example:
 - We have an input data $\{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_N}\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$

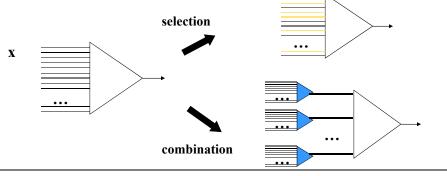
and a set of corresponding output labels $\{y_1, y_2, ..., y_N\}$

- Assume the dimension d of the data point x is very large
- We want to classify x
- Problems with high dimensional input vectors
 - A large number of parameters to learn, if a dataset is small this can result in:
 - Large variance of estimates and overfit
 - it becomes hard to explain what features are important in the model (too many choices some can be substitutable)

CS 2750 Machine Learning

Dimensionality reduction

- Solutions:
 - Selection of a smaller subset of inputs (features) from a large set of inputs; train classifier on the reduced input set
 - Combination of high dimensional inputs to a smaller set of features $\phi_k(\mathbf{x})$; train classifier on new features



Feature selection

How to find a good subset of inputs/features?

- We need:
 - A criterion for ranking good inputs/features
 - Search procedure for finding a good set of features
- Feature selection process can be:
 - Dependent on the learning task
 - e.g. classification
 - Selection of features affected by what we want to predict
 - Independent of the learning task
 - Unsupervised methods
 - may lack the accuracy for classification/regression tasks

CS 2750 Machine Learning

Task-dependent feature selection

Assume:

- Classification problem: x input vector, y output
- Feature mappings $\mathbf{\phi} = {\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots \phi_k(\mathbf{x}), \dots}$

Objective: Find a subset of features that gives/preserves most of the output prediction capabilities

Selection approaches:

- Filtering approaches
 - Filter out features with small predictive potential
 - done before classification; typically uses univariate analysis
- Wrapper approaches
 - Select features that directly optimize the accuracy of the multivariate classifier
- · Embedded methods
 - Feature selection and learning closely tied in the method

Feature selection through filtering

- Assume:
 - Classification problem: x input vector, y output
 - Inputs in x or feature mappings $\phi_{k}(\mathbf{x})$
- How to select the feature:
 - Univariate analysis
 - Pretend that only one variable, x_k , exists
 - See how well it predicts the output *y* alone
 - **Example:** differentially expressed features (or inputs)
 - Good separation in binary (case/control settings)

CS 2750 Machine Learning

Differentially expressed features

- Scores for measuring the differential expression
 - T-Test score (Baldi & Long)
 - Based on the test that two groups come from the same population

- Fisher Score Fisher (i) = $\frac{\mu_i^{(+)^2} - \mu_i^{(-)^2}}{\sigma_i^{(+)^2} + \sigma_i^{(-)^2}}$

- Area under Receiver Operating Characteristic (AUC) score

Problems:

- if many random features, the features with a good differentially expressed score must arise
- Techniques to reduce FDR (False discovery rate) and FWER (Family wise error).

Feature filtering

Other univariate scores:

- Correlation coefficients $\rho(\phi_k, y) = \frac{Cov(\phi_k, y)}{\sqrt{Var(\phi_k)Var(y)}}$
 - Measures linear dependences
- Mutual information

$$I(\phi_k, y) = \sum_i \sum_j \widetilde{P}(\phi_k = j, y = i) \log_2 \frac{\widetilde{P}(\phi_k = j, y = i)}{\widetilde{P}(\phi_k = j) \widetilde{P}(y = i)}$$

- Univariate assumptions:
 - Only one feature and its effect on y is incorporated in the mutual information score
 - Effects of two features on y are independent
- What to do if the combination of features gives the best prediction?

CS 2750 Machine Learning

Feature selection: dependent features

Filtering with dependent features

- Let φ be a current set of features (starting from complete set)
- We can remove feature $\phi_k(\mathbf{x})$ from it when: $\widetilde{P}(y | \mathbf{\phi} \setminus \phi_k) \approx \widetilde{P}(y | \mathbf{\phi})$ for all values of ϕ_k , y
- Repeat removals until the probabilities differ.

Problem: how to compute/estimate $\tilde{P}(y | \mathbf{\varphi} \setminus \phi_k), \tilde{P}(y | \mathbf{\varphi})$?

Solution: make some simplifying assumption about the underlying probabilistic model

- Example: use a Naïve Bayes
- Advantage: speed, modularity, applied before classification
- Disadvantage: may not be as accurate

Feature selection: wrappers

Wrapper approach:

• The feature selection is driven by the prediction accuracy of the classifier (regressor) we actually want to built

How to find the appropriate feature set?

- If the dimension is d then there 2d
- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
 - Internal cross-validation (m-fold cross validation)

CS 2750 Machine Learning

Internal cross-validation

- Split train set: to internal train and test sets
- Internal train set: train different models (defined e.g. on different subsets of features)
- Internal test set/s: estimate the generalization error and select the best model among possible models
- Internal cross-validation (*m*-fold):
 - Divide the train data into m equal partitions (of size N/m)
 - Hold out one partition for validation, train the classifiers on the rest of data
 - Repeat such that every partition is held out once
 - The estimate of the generalization error of the learner is the mean of errors of on all partitions

Feature selection: wrappers

- Greedy (forward) search:
 - logistic regression model with features

Start with $p(y=1 | \mathbf{x}, \mathbf{w}) = g(w_a)$

Choose feature x_i with the best error (in the internal step)

$$p(y=1 \mid \mathbf{x}, \mathbf{w}) = g(w_o + w_i x_i)$$

Choose feature x_i with the best error (in the internal step)

$$p(y=1 \mid \mathbf{x}, \mathbf{w}) = g(w_o + w_i x_i + w_j x_j)$$

Etc.

When to stop?

Goal: Stop adding features when the error on the data stops descreasing

CS 2750 Machine Learning

Embedded methods

- Feature selection + classification model learning done together
- Embedded models:
 - Regularized models
 - Models of higher complexity are explicitly penalized leading to 'virtual' removal of inputs from the model
 - · Regularized logistic/linear regression
 - Support vector machines
 - Optimization of margins penalizes nonzero weights
 - CART/Decision trees

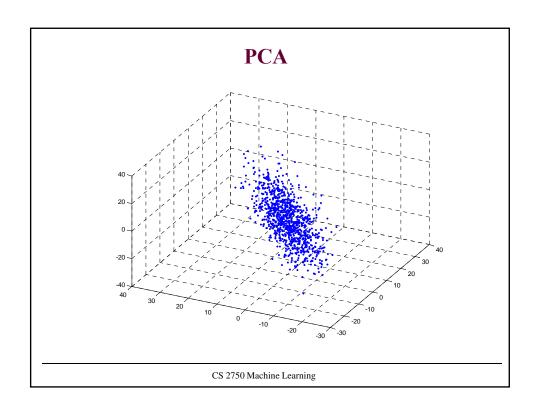
Dimensionality reduction

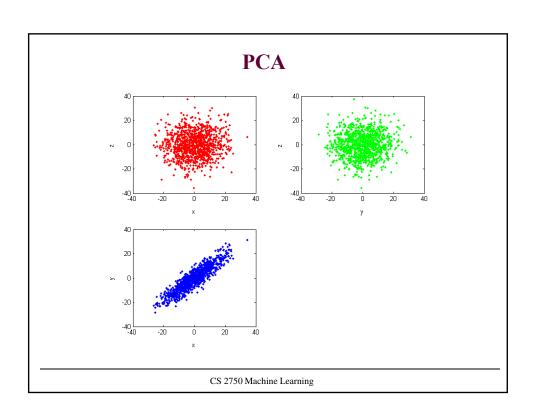
- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
 - We have an data $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$ such that $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^d)$
 - Assume the dimension d of the data point x is very large
 - We want to analyze x
- Methods of analysis are sensitive to the dimensionality d
- Our goal:
 - Find a lower dimensional representation of data of dimension d' < d

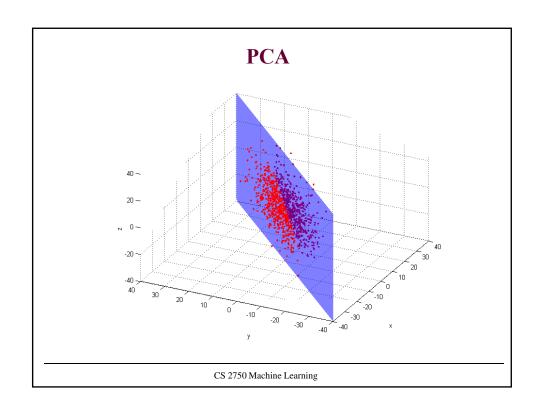
CS 2750 Machine Learning

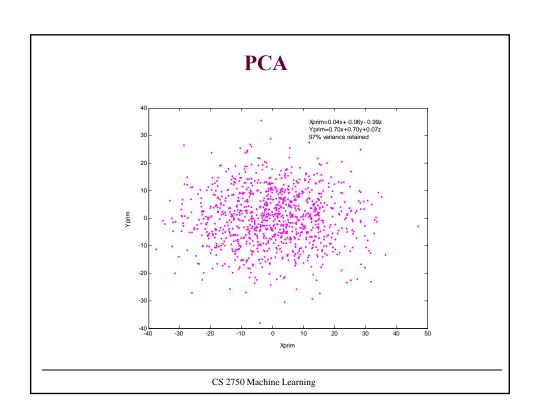
Principal component analysis (PCA)

- **Objective:** We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
 - Different from the feature subset selection !!!
- PCA:
 - A linear transformation of d dimensional input x to M dimensional feature vector z such that M < d under which the retained variance is maximal.
 - Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.









Principal component analysis (PCA)

- PCA:
 - linear transformation of d dimensional input \mathbf{x} to \mathbf{M} dimensional feature vector \mathbf{z} such that $\mathbf{M} < d$ under which the retained variance is maximal.
 - Task independent
- Fact:
 - A vector \mathbf{x} can be represented using a set of orthonormal vectors \mathbf{u} $\mathbf{x} = \sum_{i=1}^{d} z_i \mathbf{u}_i$
 - Leads to transformation of coordinates (from x to z using u's)

$$z_i = \mathbf{u}_i^T \mathbf{x}$$

CS 2750 Machine Learning

PCA

• Idea: replace d coordinates with M of z_i coordinates to represent x. We want to find the subset M of basis vectors.

$$\widetilde{\mathbf{x}} = \sum_{i=1}^{M} z_i \mathbf{u}_i + \sum_{i=M+1}^{d} b_i \mathbf{u}_i$$

 b_i - constant and fixed

- How to choose the best set of basis vectors?
 - We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)

Error for data entry \mathbf{x}^n $\mathbf{x}^n - \widetilde{\mathbf{x}}^n = \sum_{i=M+1}^d (z_i^n - b_i) \mathbf{u}_i$ Reconstruction error

$$E_{M} = \frac{1}{2} \sum_{n=1}^{N} \left\| \mathbf{x}^{n} - \widetilde{\mathbf{x}}^{n} \right\| = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d} (z_{i}^{n} - b_{i})^{2}$$

PCA

• **Differentiate the error function** with regard to all b_i set equal to 0 we get:

$$b_i = \frac{1}{N} \sum_{n=1}^{N} z_i^n = \mathbf{u}_i^T \overline{\mathbf{x}} \qquad \overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^n$$

Then we can rewrite:

$$E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}^{T} \mathbf{\Sigma} \mathbf{u}_{i} \qquad \mathbf{\Sigma} = \sum_{n=1}^{N} (\mathbf{x}^{n} - \overline{\mathbf{x}}) (\mathbf{x}^{n} - \overline{\mathbf{x}})^{T}$$
The error function is optimized when basis vectors satisfy:

$$\sum \mathbf{u}_{i} = \lambda_{i} \mathbf{u}_{i} \qquad \qquad E_{M} = \frac{1}{2} \sum_{i=M+1}^{d} \lambda_{i}$$

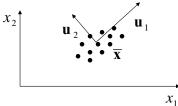
The best M basis vectors: discard vectors with d-M smallest eigenvalues (or keep vectors with M largest eigenvalues)

Eigenvector \mathbf{u}_i – is called a **principal component**

CS 2750 Machine Learning

PCA

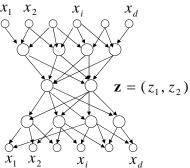
• Once eigenvectors **u**, with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions



- To find the "true" dimensionality of the data d' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- **Problem:** PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.

Dimensionality reduction with neural nets

- PCA is limited to linear dimensionality reduction
- To do non-linear reductions we can use neural nets
- Auto-associative network: a neural network with the same inputs and outputs (x)



• The middle layer corresponds to the reduced dimensions

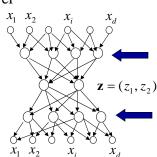
CS 2750 Machine Learning

Dimensionality reduction with neural nets

• Error criterion:

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} (y_i(x^n) - x^n)^2$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- Non-linearities modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning



Multidimensional scaling

- Find a lower dimensional space projection such that the distances among data points are preserved
- Used in visualization d-diminensional data transformed to 3D or 2D
- Dissimilarities before projection $\delta_{i,j} = ||x_i x_j||$
- Objective: Optimize points and their coordinates by fitting the dissimilarities afterwards

$$\min_{\{x_1, x_2, \dots x_n\}} \sum_{i < j} (\|x_i' - x_j'\| - \delta_{ij})^2$$

CS 2750 Machine Learning

Other (unsupervised) methods

- Independent component analysis:
 - Identify independent components/signals/sources in the original data
 - Non-Gaussian signals

x = As X is a linear combination of values for sources

$$\mathbf{s} = \mathbf{W}\mathbf{x} = \mathbf{A}^{-1}\mathbf{x}$$

Dimensionality reduction through clustering

- Clustering algorithms
 - group together "similar" instances in the data sample
- Dimensionality reduction based on clustering:
 - Replace a high dimensional data entry with a cluster label
- Problem:
 - Determistic clustering gives only one label per input
 - May not be enough to represent the data for prediction
- Solutions:
 - Clustering over subsets of input data
 - Soft clustering (probability of a cluster is used directly)

CS 2750 Machine Learning

Dimensionality reduction through clustering

- **Soft clustering** (e.g. mixture of Gaussians) attempts to cover all instances in the data sample with a small number of groups
 - Each group is more or less responsible for a data entry
 (responsibility a posterior of a group given the data entry)

Mixture of G. responsibility

$$h_{il} = \frac{\pi_{i} p(x_{l} | y_{l} = i)}{\sum_{u=1}^{k} \pi_{u} p(x_{l} | y_{l} = u)}$$

- Dimensionality reduction based on soft clustering
 - Replace a high dimensional data with the set of group posteriors
 - Feed all posteriors to the learner e.g. linear regressor, classifier

Dimensionality reduction through clustering

- We can use the idea of soft clustering before applying regression/classification learning
- Two stage algorithms
 - Learn the clustering
 - Learn the classification
- Input clustering: **x** (high dimensional)
- Output clustering (Input classifier): $p(c = i \mid \mathbf{x})$
- Output classifier: y
- Example: Networks with Radial Basis Functions (RBFs)
- Problem:
 - Clustering learns based on $p(\mathbf{x})$ (disregards the target)
 - Prediction based on $p(y \mid x)$

CS 2750 Machine Learning

Networks with radial basis functions

- An alternative to multilayer NN for non-linearities
- Radial basis functions:

$$f(x) = w_0 + \sum_{j=1}^k w_j \phi_j(\mathbf{x})$$

- Based on interpolations of prototype points (means)
- Affected by the distance between the x and the mean
- Fit the outputs of basis functions through the linear model
- Choice of basis functions:

Gaussian
$$\phi_j(x) = \exp\left\{\frac{\left\|x - \mu_j\right\|^2}{2\sigma_j^2}\right\}$$

- Learning:
 - In practice seem to work OK for up to 10 dimensions
 - For higher dimensions (ridge functions logistic)
 combining multiple learners seem to do better job