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Clustering
Groups together “similar” instances in the data sample

Basic clustering problem:
• distribute data into k different groups such that data points 

similar to each other are in the same group 
• Similarity between data points is defined in terms of some 

distance metric (can be chosen)

Clustering is useful for:
• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 
• Dimensionality reduction

High dimensional data replaced with a group (cluster) label
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Clustering example

• We see data points and want to partition them into groups

• Which data points belong together?
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• We see data points and want to partition them into the groups

• Which data points belong together?
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Clustering example

• We see data points and want to partition them into the groups

• Requires a distance metric to tell us what points are close to 
each other and are in the same group
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Clustering example

• A set of patient cases 

• We want to partition them into groups based on similarities

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 
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Clustering example

• A set of patient cases 

• We want to partition them into the groups based on similarities

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 

How to design the distance metric to quantify similarities?
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Clustering example. Distance measures. 

In general, one can choose an arbitrary distance measure.

Properties of distance metrics:

Assume 2 data entries a, b

Positiveness:

Symmetry:

Identity:

Triangle inequality: 
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Distance measures. 

Assume pure real-valued data-points:

What distance metric to use?

12 34.5    78.5    89.2    19.2
23.5   41.4     66.3   78.8      8.9
33.6   36.7     78.3   90.3    21.4
17.2   30.1     71.6   88.5    12.5
…
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Distance measures

Assume pure real-valued data-points:

What distance metric to use?

Euclidian: works for an arbitrary k-dimensional space

12 34.5    78.5    89.2    19.2
23.5   41.4     66.3   78.8      8.9
33.6   36.7     78.3   90.3    21.4
17.2   30.1     71.6   88.5    12.5
…
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Distance measures 

Assume pure real-valued data-points:

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional 
space

12 34.5    78.5    89.2    19.2
23.5   41.4     66.3   78.8      8.9
33.6   36.7     78.3   90.3    21.4
17.2   30.1     71.6   88.5    12.5
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Distance measures. 

Assume pure real-valued data-points:

Manhattan distance:

works for an arbitrary k-dimensional space

12 34.5    78.5    89.2    19.2
23.5   41.4     66.3   78.8      8.9
33.6   36.7     78.3   90.3    21.4
17.2   30.1     71.6   88.5    12.5
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Distance measures 

Generalized distance metric:

semi-definite positive matrix 

is a matrix that weights attributes proportionally to their 
importance.  Different weights lead to a different distance 
metric. 

If             we get squared Euclidean  

(covariance matrix) – we get the Mahalanobis 
distance that takes into account correlations among 
attributes
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Distance measures. 

Assume pure binary values data:

What distance metric to use?

0   1   1   0   1 
1   0   1   0   1
0   1   1   0   1
1   1   1   1   1
…
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Distance measures. 

Assume pure binary values data:

What distance metric to use?

Hamming distance: The number of bits that need to be changed 
to make the entries the same

How about Euclidean distance? 

0   1   1   0   1 
1   0   1   0   1
0   1   1   0   1
1   1   1   1   1
…
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Distance measures. 

Assume pure categorical  data:

What distance metric to use?

Hamming distance: The number of number of values that need 
to be changed to make them the same

0   1   1   0   0 
1   0   3   0   1
2   1   1   0   2
1   1   1   1   2
…
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Distance measures. 

Combination of real-valued and categorical attributes

What distance metric to use?

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 
Patient  2        62        M            87                    130/85 
Patient  3        67        F             80                    126/86 
Patient  4        65        F             90                    130/90 
Patient  5        70        M            84                    135/85 
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Distance measures. 

Combination of real-valued and categorical attributes

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and 
Hamming distances for subsets of attributes

Patient #        Age    Sex     Heart Rate     Blood pressure …    

Patient  1        55        M            85                    125/80 
Patient  2        62        M            87                    130/85 
Patient  3        67        F             80                    126/86 
Patient  4        65        F             90                    130/90 
Patient  5        70        M            84                    135/85 
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Clustering

Clustering is useful for:

• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 

• Dimensionality reduction

High dimensional data replaced with a group (cluster) label

• Data reduction: Replaces many datapoints with the point 
representing the group mean  

Problems:

• Pick the correct similarity measure (problem specific)

• Choose the correct number of groups

– Many clustering algorithms require us to provide the 
number of groups ahead of time
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Clustering algorithms
• K-means algorithm 

– suitable only when data points have continuous values; 
groups are defined in terms of cluster centers (also called 
means). Refinement of the method to categorical values:  
K-medoids

• Probabilistic methods (with EM)
– Latent variable models: class (cluster) is represented by 

a latent (hidden) variable value
– Every point goes to the class with the highest posterior
– Examples: mixture of Gaussians, Naïve Bayes with a 

hidden class
• Hierarchical methods

– Agglomerative
– Divisive
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K-means
K-Means algorithm:

Initialize randomly k values of means (centers)
Repeat two steps until no change in the means:
– Partition the data according to the current set of means 

(using the similarity measure)
– Move the means to the center of the data in the current 

partition
Stop when no change in the means

Properties: 
• Minimizes the sum of squared center-point distances for all 

clusters 

• The algorithm always converges (to the local optima). 
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K-means algorithm
• Properties:

– converges to centers minimizing the sum of squared center-
point distances (still local optima) 

– The result is sensitive to the initial means’ values
• Advantages:

– Simplicity
– Generality – can work for more than one distance measure

• Drawbacks:
– Can perform poorly with overlapping regions
– Lack of robustness to outliers
– Good for attributes (features) with continuous values

• Allows us to compute cluster means
• k-medoid algorithm used for discrete data
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Probabilistic (EM-based) algorithms

• Latent variable models
Examples:  Naïve Bayes with hidden class

Mixture of Gaussians
• Partitioning: 

– the data point belongs to the class with the highest posterior
• Advantages:

– Good performance on overlapping regions
– Robustness to outliers
– Data attributes can have different types of values

• Drawbacks:
– EM is computationally expensive and can take time to 

converge
– Density model should be given in advance
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Hierarchical clustering. 

Uses an arbitrary similarity/dissimilarity measure.

Typical similarity measures d(a,b) :

Pure real-valued data-points:

– Euclidean, Manhattan, Minkowski distances

Pure binary values data:

– Hamming distance - Number of matching values

– the same as Euclidean 

Pure categorical data:

– Number of matching values 

Combination of real-valued and categorical attributes

– Weighted, or Euclidean
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Hierarchical clustering 

Approach:

• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures

• Construct clusters greedily:

– Agglomerative approach

• Merge pair of clusters in a bottom-up fashion, starting 
from singleton clusters

– Divisive approach: 

• Splits clusters in top-down fashion, starting from one 
complete cluster

• Stop the greedy construction when some criterion is satisfied

– E.g. fixed number of clusters
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Cluster merging

• Construction of  clusters through greedy agglomerative 
approach

– Merge pair of clusters in a bottom-up fashion, starting from 
singleton clusters

– Merge clusters based on cluster (or linkage) distances. 
Defined in terms of point distances. Examples:
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Hierarchical clustering example
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Hierarchical clustering example
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• dendogram
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Hierarchical clustering

• Advantage:

– Smaller computational cost; avoids scanning all possible 
clusterings

• Disadvantage:

– Greedy choice fixes the order in which clusters are merged; 
cannot be repaired

• Partial solution:

• combine hierarchical clustering with iterative algorithms 
like k-means
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Other clustering methods

• Spectral clustering

– Uses similarity matrix and its spectral decomposition 
(eigenvalues and eigenvectors)

• Multidimensional scaling

– techniques often used in data visualization for exploring 
similarities or dissimilarities in data. 


