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Learning probability distribution

Basic learning settings:
e Asetof random variables X={X,, X,,...,X,}
* A model of the distribution over variables in X

with parameters ©
e Data D={D,,D,,..D,}

s.t. D =(x,x5,...x))

Objective: find parameters © that describe the data
Assumptions considered so far:

— Known parameterizations

— No hidden variables

— No-missing values
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General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the
following two steps:

Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables
with expectations for the current set of parameters @'

2. Maximization step. Compute the new estimates of ® for
the completed data

Stop when no improvement possible
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EM

Let H - be a set of hidden or missing values
Derivation

P(H,D|0,§)=P(H|D,0,5)P(D]|0O,S)
log P(H,D|®,¢)=1log P(H|D,0,5)+log P(D|0,¢)
log P(D|0©,5)=log P(H,D|©,&)—log P(H | D,©,&)

T Log-likelihood of data
Average both sides with P(H | D,0',£) for some O
Eyp e 109P(D|©,8) = Eyy o l0g P(H, D |©,8) — Eyy, o l0g P(H | ©,8)
log P(D[©,5)=0(0]0")+H (0|06
Log-likelihood of data
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EM algorithm

Algorithm (general formulation)
Initialize parameters ®
Repeat
Set O'=0
1. Expectation step
Q(® | G)') = EH|D,®' Iog P(H,D | G):é)

2. Maximization step
® =arg max 0(® |O")
&)

until no or small improvementin ® (© = 0")

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?
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EM algorithm

* Why is the EM algorithm correct?

e Claim: maximizing Q improves the log-likelihood
1(0)=0(0|0")+H(O]|6")

Difference in log-likelihoods (current and next step)

1(0)-1(0")=0(0|0)-0(0'0")+ H(0]|0") - H(0']0")

Subexpression H(® |0')-H(®'|0©')>0
Kullback-Leibler (KL) d}is/ergence (distance between 2 distributions)
KL(P|R) = Z P, Iog — >0 [salways positive !!

H(©]|0")= EH|D@ IO91”(H|® D,¢)= ZP(H|D ©')log P(H |©,D,¢)

H(@|@)_H(®|®)=ZP(H|D'®)'°9}1)J((Z||(2)11))§_
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EM algorithm

Difference in log-likelihoods
1(0)-1(06)=0(0|0")-0(0'0")+H(O|0") - H(0'|0)
1(0)-1(0)=20(0]06)-0(006)
Thus
by maximizing Q we maximize the log-likelihood
1(0)=0(0]0")+H(©]|06)
EM is a first-order optimization procedure

* Climbs the gradient
* Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages

Key advantages:
* In many problems (e.g. Bayesian belief networks)

0(©]0") = EH|D,®‘ log P(H,D]©,¢)

— has a nice form and the maximization of Q can be carried
out in the closed form

» No need to compute Q before maximizing
» We directly optimize
— using quantities corresponding to expected counts
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Naive Bayes with a hidden class and
missing values

Assume:

« P(X) is modeled using a Naive Bayes model with hidden class
variable

» Missing entries (values) for attributes in the dataset D

Hidden class variable

(X € Attributes are independent
/g \x given the class
O
X, X, ... X,
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EM for the Naive Bayes

* We can use EM to learn the parameters
0(010') = Eyyp o log P(H, D |©,£)

* Parameters:

7; prioron class j

0, probability of an attribute i having value k given class j
* Indicator variables:

5/ for example /, the class is; ; if true (=1) else false (=0)

6U.kl for example /, the class is j and the value of attrib 7 is &

 because the class is hidden and some attributes are missing, the
values (0,1) of indicator variables are not known; they are
hidden

H — a collection of all indicator variables
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EM for the Naive Bayes model

* We can use EM to do the learning of parameters
000" = EH|DG)' log P(H,D|©,¢)

log P(H,D|0©,&) = IogHHﬁ H]_[ey,f

=1

N

=2, 2.(5l0g7, %2, ) 5 1090,)

=1
Eype 109P(H,D|©,&) = ZZ( e (031097, +ZZ wpe (03)10960,,)

=

EH|D,®'(§I') =p(C, =jl|D,,0) Substitutes 0,1
Eppe(® k) (X, =k,C =j|D,©) with expected value
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EM for the Naive Bayes model

« Computing derivatives of Q for parameters and setting it to 0
we get:

. :L el]k = v lif
J N N!«jk
k=1

~ N N
szz EH|D,®-(5 :z p(C,=j|D,,0"

/=1 =1
_ N
Nijk:ZEH|D®(5lk) Zp( .=k C =j|D,0)

=1

* Important:
— Use expected counts instead of counts !!!
— Re-estimate the parameters using expected counts
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EM for BBNs

The same result applies to learning of parameters of any
Bayesian belief network with discrete-valued variables

0©]0") = EH|D,®' log P(H,D]©,¢)

Ny .

el'jk = + «—— Parameter value maximizing Q

> W,

k=1
N = l l !
Nijk:zp(xi:k’paizle’@)

=1

Aeai may require inference

gain:

— Use expected counts instead of counts
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Gaussian mixture model
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Mixture of Gaussians

 Density function for the Mixture of Gaussians model
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Gaussian mixture model

Probability of occurrence of a data point x

is modeled as P(C)
p(x) = ZP(C =i)p(x|C =1) C

where C p(X|C=i)
p(C=1i)

= probability of a data point coming
from class C=i
p(x|C=i)=N(u; X))
= class conditional density (modeled as a Gaussian)
for class |
Special feature: C is hidden !!!!
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Generative Naive Bayes classifier model

» Generative classifier model based on the Naive Bayes
» Assume the class labels are known. The ML estimate is

N, =>1
e class C
_ N,
T, =—"
N Cc=1 C=2
TR o
l N,’ JiCy=i !
. ny,X, n,,X,
Yy = — x —n)x.—n.)
; N,-,»;c,:i( Sor)(x; )
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Gaussian mixture model

* In the Gaussian mixture Gaussians are not labeled

* We can apply EM algorithm:
— re-estimation based on the class posterior
h, =p(C =il|x,0'")= mp(cl =i|®")p(x, |C, =i,0')
Z p(C,=ul®)p(x,|C, =u,0")

Ni = z hil \ u=1

]\’/ Count replaced with the expected count
T, =—=

N
~ 1
l‘l’l = FIZ]: hilxj
> 1
X, = Vz hy (Xj - ui)(xj - ui)T

i 1
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Gaussian mixture algorithm
* Special case: fixed covariance matrix for all hidden groups
(classes) and uniform prior on classes
* Algorithm:
Initialize means p, for all classes i
Repeat two steps until no change in the means:
1. Compute the class posterior for each Gaussian and each
point (a kind of responsibility for a Gaussian for a point)
Responsibility: hy = mp(C, =i10)p(x 1€, =00
> p(Cr=ul®)p(x|C, =u,0")
2. Move the means of the Gaussians to the center of the data,
weighted by the responsibilities &

2

hil
1
N
Z hzl

New mean:

X,
p; =
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Gaussian mixture model. Gradient ascent.

* A set of parameters

r(C)
®:{7[1’”2’--77m’ﬂ1’ﬂ21---ﬂm} c
Assume unit variance terms and fixed priors
1
P(x|C=i)=(2x)™"? exp{—EHx —ﬂi”z} p(x|C)
N m 1 X
_ 2
P(D1©) =[] X 7,(22)™ exp{—;llx, — i }
=1 i=1
= C -1/2 1 2
[(®) = Z log Z 7.(27) ' exp _E”xl - ,ui”
=1 i=1
ol(O ul
% = Z hy(x, — ;) - very easy on-line update
H; =1
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EM versus gradient ascent

Gradient ascent EM N
N 2 h il X 1
ﬂi(_ﬂf+azhi1(x1_ﬂf) H < lzllN—
1=1 h
il

Learning rate No learning rate

..... .....
L X J L X J

Small pull towards distant R_’enormalized —big jump in the
uncovered data first step
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K-means approximation to EM

Mixture of Gaussians with the fixed covariance matrix:
» posterior measures the responsibility of a Gaussian for every point

- p(C,=i|®")p(x,|C,=i,0")
il m
2 p(Cr=ul®)p(x,|C =u,0")
u=1 N
. . z hyx,
* Re-estimation of means: p, = L=

* K- Means approximations
» Only the closest Gaussian is made responsible for a point

h, =1 Ifiisthe closest Gaussian
h; =0 Otherwise

» Results in moving the means of Gaussians to the center of the
data points it covered in the previous step
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K-means algorithm

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:
— Partition the data according to the current means (using
the similarity measure)
— Move the means to the center of the data in the current
partition

* Used frequently for clustering data
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