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Announcements

Office hours posted on the course web page

Homework 1:
* due on Wednesday, January 25 before the class

You should submit:
* A hardcopy of the report (before the lecture)
* Programs (if we ask for them) in electronic form

— Instructions for program submissions are on the course
web site
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Outline

Outline:

* Density estimation:

— Maximum likelihood (ML)

— Bayesian parameter estimates
- MAP

Bernoulli distribution

Binomial distribution

Multinomial distribution

Normal distribution
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Density estimation

Density estimation: is an unsupervised learning
» Learn relations among attributes in the data

Data: D={D,,D,,..,D,}
D, =x; a vector of attribute values
Attributes:
» modeled by random variables X={X;, X,,..., X } with
— Continuous or discrete valued variables

Density estimation attempts to learn the underlying
probability distribution:  p(X) = p(X,, X,,..., X,)
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Density estimation

Data: p ={D,,D,,..,.D.}
D, =x, a vector of attribute values

Objective: estimate the underlying probability distribution over
variables X , p(X), using examplesin D

true distribution estimate
n samples )

p(X) D={D,,D,,..,D,} p(X)

Standard (iid) assumptions: Samples
e are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ©
p(X]0)

» Example: mean and covariances of a multivariate normal

» Estimation: find parameters ® describing data D

Non-parametric

» The model of the distribution utilizes all examples in D

» As if all examples were parameters of the distribution

» Examples: Nearest-neighbor
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
* Asetof random variables X={X,, X,,..., X}
* A model of the distribution over variables in X
with parameters @ : p(X|0)

e Data D={D,D,,.,D,}

Objective: find parameters ® such that p(X|®) fits data D
the best
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Parameter estimation

* Maximum likelihood (ML)
maximize P(D|®,¢)
— yields: one set of parameters G,
— the target distribution is approximated as:
FA)(X) = p(X | ®ML)
* Bayesian parameter estimation
— uses the posterior distribution over possible parameters

0(@|D,&) = PL10.5)pO]c)

p(D[4)
— Yields: all possible settings of ©® (and their “weights”)

— The target distribution is approximated as:
B(X) = p(X|D) = [ p(X |©)p(® | D,£)dO
(0]
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Parameter estimation

Other possible criteria:
* Maximum a posteriori probability (MAP)
maximize P(@|D,¢) (mode of the posterior)
— Yields: one set of parameters ®M AP
— Approximation:
ﬁ(X) = p(X | GMAP)
* Expected value of the parameter
0= E(®) (mean of the posterior)
— Expectation taken with regard to posterior P(® | D, &)
— Yields: one set of parameters
— Approximation: A
p(X) = p(X|O)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes X, such that
*head x =1

o tail X =0

Model: probability of ahead &
probability of atail ~ (1-6)
Objective: R
We would like to estimate the probability of a head ¢
from data
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Parameter estimation. Example.

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your estimate of the probability of a head ?

0=?
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Parameter estimation. Example

» Assume the unknown and possibly biased coin
* Probability of the head is &
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate
§-_06
25
This is the maximum likelihood estimate of the parameter &
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Probability of an outcome

Data: D asequence of outcomes X such that
* head x; =1
e tail X =0
Model: probability of ahead €
probability of atail  (1-6)

Assume: we know the probability &
Probability of an outcome of a coin flip X

P(x,|6)=6(1—-60)"") <= Bernoulli distribution
— Combines the probability of a head and a tail
— So that X; isgoing to pick its correct probability

- Gives @ for x =1
— Gives (1-6) for x. =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
e head X =1
* tail X =0
Model: probability of ahead @
probability of atail ~ (1-6)
Assume: a sequence of independent coin flips

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|8)="7
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail ~ (1-6)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|#)=060(1-60)6(1-6)6O
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

e head X =1

* tail X =0
Model: probability of ahead @

probability of atail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|8)=00(1-0)0(1-0)6

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail X =0
Model: probability of ahead @&
probability of atail ~ (1-6)
Assume: a sequence of coin fips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|#)=66(1-60)0(1-6)6
6
P(DIo)=]]o"@-o)"

i=1
Can be rewritten using the Bernoulli distribution:
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The goodness of fit to the data

Learning: we do not know the value of the parameter &
Our learning goal:

» Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

P(D|6)= H 6% (1-0)4

Intuition:
» more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data
fit :

Error (D,0) =-P(D |8)
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Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x; such that
* head x =1
. tail X; =0
Model: probability of ahead &
probability of atail  (1-6)
Objective:
We would like to estimate the probability of a head 0

Probability of an outcome X;
P(x,|0)=60"{1- 9)(1‘Xi) Bernoulli distribution
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Maximum likelihood (ML) estimate.
Likelihood of data: n
P(D|6,&)=[]6"@-0)""

i=1

Maximum likelihood estimate
6, =argmax P(D|60,¢)
0

Optimize log-likelihood (the same as maximizing likelihood)

I(D,0) =log P(D |6, &) = |ogf[9xi (- 6))

zn:xi logf+(1-x)log—-0) = Iolg;lezn: X + Iog(l—H)Zn:(l— X:)

i=1

N, - number of heads seen N, - number of tails seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
I(D,8)=N,logé+N, log(Ll—-6)
Set derivative to zero
ADO N N, _
00 ¢ (1-09)

Solving 0=

ML Solution: O = N, _ N,
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

* Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of head and tail ?

Head: ¢ :_l:L:E:QG
N N,+N, 25
Tail: (1_9ML):&:L:E:O_4
N N +N, 25
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Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

eMAP =arg ;nax p(¢9| Dré:)

Likelihood of data

-
p(@|D,é)= PP |P9('§)| ggé’ 1) (via Bayes rule)

Normalizing factor

F%D|a§)=f10“a—0W””=9Ma—9W2

rior

P(@1&) - is the prior probability on @

How to choose the prior probability?
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Prior distribution

Choice of prior: Beta distribution

p(0]&) = Beta(d| o, ) :%

[(x) - aGamma function TI'(x)=(x-1)T(x-1)
For integer valuesof x T'(n)=(n-1)!

00{1 -1 (1 _ 9) a,-1

Why to use Beta distribution?
Beta distribution “fits” Bernoulli trials - conjugate choices
P(D|6,&)=0"(1-0)"

Posterior distribution is again a Beta distribution
P(D|6,¢)Beta(@| oy, ax,)

=Beta(@d|a, + N,,a, + N
P(D|&) @y 1@ 2)

p(@|D.5)=
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Beta distribution

3
a=101 a=1

b=10.1 bh=1

p(0]&) = Beta(d]a,b) =—@FP) gaig_ gyos
@)
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Posterior distribution

2 - )
“| prior “| likelihood function
P Beta
| *
0
00 0.5 1 0 0.5 1
B2 1
posterior
1 Beta
0
0 0.5 1
7
P(D|@,<&)Beta ,
0(0|D,&) = (P19 fg(mg'“l %) _ Beta(0 |, + Ny, + N,)
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Maximum a posterior probability

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

P(D|0,&)Beta(d | oy, )
P(D[¢)

_ TI'(ay+a,+N; +N,)
F(al + Nl)r(az + Nz)

p(@]D.¢) =

=Beta(@ |, + N,,a, + N,)

HN1+a1—l (1_ 9) No+a,-1

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as prior counts)

o, +N; -1
a,+a,+N;+N, -2

MAP Solution:

QMAP =
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MAP estimate example

» Assume the unknown and possibly biased coin

* Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

e Assume p(@]|<&)=Beta(@]5,5)

What is the MAP estimate?
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MAP estimate example

» Assume the unknown and possibly biased coin

* Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

e Assume p(€]|<&)=Beta(d]5,5)

What is the MAP estimate ?

N, +a; -1 N, +a, -1 _19
N-2 N,+N,+a,+a,-2 33

HMAP =
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MAP estimate example

* Note that the prior and data fit (data likelihood) are combined

e The MAP can be biased with large prior counts

* Itis hard to overturn it with a smaller sample size

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10
e Assume L
P(@1¢) = Beta(d|5,5) Owe =55
19
p(0 | &) = Beta(d | 5,20) Owe = g
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Bayesian framework

Both ML or MAP estimates pick one value of the parameter

» Assume: there are two different parameter settings that are
close in terms of their probability values. Using only one of
them may introduce a strong bias, if we use them, for
example, for predictions.

Bayesian parameter estimate

— Remedies the limitation of one choice

— Keeps all possible parameter values

— Where  p(@]D,¢&) ~Beta(@|ay + Ny, a, +N,)
* The posterior can be used to define p(A|D):

P(A|D)=[p(A|@)p(®|D,&)dO
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Bayesian framework

* Predictive probability of an outcome x=1 in the next trial
P(x=1|D,¢)

Posterior density

1 —t—
P(x=1|D,&) = [P(x=1[6,£)p(0| D,£)do
0

= [p(01D,£)d0=E(®)

* Equivalent to the expected value of the parameter
— expectation is taken with respect to the posterior distribution

p(@|D,&) =Beta(@|a, + N, o, +N,)
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Expected value of the parameter

How to obtain the expected value?

l t T +1,)
E(H): HBeta(Hln ¥/ )dH: 9#0’71—1(1_0)772—1(10
! o j T()T ()

= M ( 6}'71 (1—6’)77271(10
()T (,) 5

_ U(m +1n,) T(,+DI(77,)
L(m)C(n,) T(m+m,+1)

1
j Beta(r7, +1,7,)d6
N

_/

'

__h 1
mtn,

Note:  T'(g+1)=al'(a) for integer values of «
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Expected value of the parameter

Substituting the results for the posterior:

p(@|D,&) =Beta(@|a, + N, a2, +N,)

o +N;

Weget  E@)=
o, +N; +a,+N,

Note that the mean of the posterior is yet another
“reasonable” parameter choice:

6=E(0)
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