CS 2750 Machine Learning
Lecture 23

Reinforcement learning I

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 2750 Machine Learning

mailto:milos@cs.pitt.educ

Reinforcement learning

We want to learn the control policy: 7: X — A
We see examples of x (but outputs a are not given)

Instead of a we get a feedback (reinforcement, reward) from a
critic quantifying how good the selected output was

Input

Learner

output

‘ reinforcement

Critic

The reinforcements may not be deterministic
Goal: find 7: X — A with the best expected reinforcements

CS 2750 Machine Learning

Gambling example.

« Game: 3 different biased coins are tossed

— The coin to be tossed is selected randomly from the three
options and | always see which coin I am going to play next

— | make bets on head or tail and | always wage $1
— If I win | get $1, otherwise | lose my bet
 RL model:
— Input: X —a coin chosen for the next toss,
— Action: A — choice of head or tail,
— Reinforcements: {1, -1}
e Apolicy 7: X —> A

Example: 7: | Coinl— head

Coin2— tail
Coin3— head

CS 2750 Machine Learning

Gambling example

RL model:

— Input: X —a coin chosen for the next toss,
— Action: A — choice of head or tail,

— Reinforcements: {1, -1}

— Apolicy 7: | Coinl— head
Coin2— tail
Coin3— head
Learning goal: find 7: X — A 7. | Coinl— ?
Coin2— ? |
Coin3— ?

maximizing future expected profits

E(Z r'r) y adiscount factor = present value of money
t=0

CS 2750 Machine Learning

Agent navigation example.

« Agent navigation in the Maze:
— 4 moves in compass directions

— Effects of moves are stochastic — we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest expected
time

IMOVES

. !
o
-~

CS 2750 Machine Learning

Agent navigation example

« The RL model:
— Input: X — position of an agent
— Output: A —-a move
— Reinforcements: R
» -1 for each move
« +100 for reaching the goal
— Apolicy: 7: X > A

7. | Position1l — right
Position 2 — right

Position 20 — left

» Goal: find the policy maximizing future expected rewards

E(Zytn)

CS 2750 Machine Learning

Objectives of RL learning

* Objective:
Find a mapping 7~ : X — A
That maximizes some combination of future reinforcements
(rewards) received over time
« Valuation models (quantify how good the mapping is):
— Finite horizon model

,
E(Z) Time horizon: T >0
t=0
— Infinite horizon discounted model

EQ »'r) Discount factor: O0<jy <1
t=0

— Average reward

lim = E(Zr)

T—)ooT

CS 2750 Machine Learning

RL with immediate rewards

« EXxpected reward

EQ7'R) = E(R) + EGR) + EGR) +..

* Optimizing the expected reward

max EQ y'r) = ma > Y'E@) = max > ¥'R(r) = max R()OQ_»")
t=0 t=0 t=0 t=0

= (. 7")max R(z)
max R(x) = max 3" R(x, 7(x)P(x) = > P()[max R(x, 7(x))]

Optimal strategy: 7*: X — A

7 *(X) =arg max R(x,a)

a

CS 2750 Machine Learning

RL with immediate rewards

« Problem: In the RL framework we do not know R(X,a)

— The expected reward for performing action a at input x
 Solution:

— For each input x try different actions a

— Estimate R(x,a) using the average of observed rewards

— Action choice 7 (X) =arg max F~2(x, a)
— Accuracy of the estimate: statistics (Hoeffding’s bound)

PQﬁ(x, a) — R(X, a)‘ > g)s exp [_ (r::iﬁ[::)z } <o

] . _ 2
~ Number of samples: > (o — Frin)™ 1y L
’ 2& o)

CS 2750 Machine Learning

RL with immediate rewards

On-line (stochastic approximation)

— An alternative way to estimate R(X, a)

Idea:

— choose action a for input x and observe a reward r™*°
— Update an estimate

R(X,a) < (1—a)R(X,a) +a r*? a - alearning rate

Convergence property: The approximation converges in the
limit for an appropriate learning rate schedule.

Assume: a(n(x,a)) - is a learning rate for nth trial of (x,a) pair
Then the converge is assured if:

o0

1. Z a(l) = oo 2.

=1

a(i)? < oo

M

CS 2750 Machine Learning

Exploration vs. Exploitation

« Uniform exploration

— Choose the “current” best ch_gice with probability 1— ¢
7(X) =arg max R(x,a)

acA

— All other choices are selected with a uniform probability

E
al| X)=
(@l =

» Boltzman exploration

— The action is chosen randomly but proportionally to its
current expected reward estimate

exp [ﬁ(x, a)/T]
> exp [ﬁ(x, a')/T]

a'eA

T — Is temperature parameter. What does it do?

p(alx) =

CS 2750 Machine Learning

RL with delayed rewards

« Agent navigation in the Maze:
— 4 moves in compass directions

— Effects of moves are stochastic — we may wind up in other
than intended location with non-zero probability

— Objective: reach the goal state in the shortest time
moves
. O

- | =

|

CS 2750 Machine Learning

earning with delayed rewards

Actions, in addition to immediate rewards affect the next state
of the environment and thus indirectly also future rewards

We need a model to represent environment changes
The model we use is called Markov decision process (MDP)
— Frequently used in Al, OR, control theory

— Markov assumption: next state depends on the previous
state and action, and not states (actions) in the past

action,_,

CS 2750 Machine Learning

Markov decision process

action,_,

Formal definition: 4-tuple (S,AT,R)

« Asetofstates S (X) locations of a robot

« Asetofactions A move actions

e Transition model Sx AxS —[0,1] | where can | get
with different moves

« Reward model SxAxS >R reward/cost
for a transition

CS 2750 Machine Learning

MDP problem

 We want to find the best policy -5 > A
« Value function (V) for a policy, quantifies the goodness of
a policy through, e.g. infinite horizon, discounted model

EQ »'r)
t=0
It: 1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through
expectation-based measures)

CS 2750 Machine Learning

Value of a policy for MDP

 Assume a fixed policy 7:S—>A

« How to compute the value of a policy under infinite horizon
discounted model?

Fixed point equation:

V7(s) = R(s,7z(s)) +7 D> _P(s'| s, z())V " (s")

\ / \ S'€S Vs
N
expected one step _ expected discounted reward for following
reward for the firstaction the policy for the rest of the steps
Var+ WV v=(1-U)"r

— For a finite state space— we get a set of linear equations

CS 2750 Machine Learning

Optimal policy
« The value of the optimal policy

V7 (s) = Tgx[R(s a)+y D P(s'|s,a)V (s)}
E / __s'eS =

expected one step expected discounted reward for following
reward for the first action the opt. policy for the rest of the steps

Value function mapping form:
V7(s)=(HV)(s)
. The optimal policy: 7 :S— A
7 (s) =arg max[R(s, a)+y > P(s's, a)V*(s')}

aeA s'eS

CS 2750 Machine Learning

Computing optimal policy

Dynamic programming. Value iteration:

— computes the optimal value function first then the policy
— Iterative approximation

— converges to the optimal value function

Value iteration (&)

Initialize 'V :: Vis vector of values for all states

repeat
set V'<«—V

set V «— HV
until [V'=V|_ <&
output 7 (s) =arg max[R(s, a)+y> P(s'|s,aV (s')}

acA S'ES

CS 2750 Machine Learning

Reinforcement learning of optimal policies

* In the RL framework we do not know the MDP model !!!
« Goal: learn the optimal policy
7 1S —> A
« Two basic approaches:
— Model based learning
 Learn the MDP model (probabilities, rewards) first
 Solve the MDP afterwards
— Model-free learning
 Learn how to act directly
* NO need to learn the parameters of the MDP
— A number of clones of the two in the literature

CS 2750 Machine Learning

Model-based learning

We need to learn transition probabilities and rewards
Learning of probabilities
— ML or Bayesian parameter estimates

— Use counts _ N .
P(SI| S, a) — — Ns,a — Z Ns,a,s'

Ns’a s'eS

Learning rewards
— Similar to learning with immediate rewards

—_ 1 Ns,a
R(s,a) = N— Z ris,a
s,a 1=1

Problem: on-line update of the policy
— would require us to solve the MDP after every update !!

CS 2750 Machine Learning

Model free learning

Motivation: value function update (value iteration):

V (S) «— rQSK([R(S, a)+y > P(s'|s,a)V (s')}

s'eS

Let
Q(s,a) =R(s,a)+y > _ P(s'|s,a)V(s')

s'eS

Then V (s) < max Q(s,a)

Note that the update can be defined purely in terms of Q-
functions

Q(s,a) <« R(s,a)+y > P(s'|s,a) max Q(s', a')

s'eS

CS 2750 Machine Learning

Q-learning

* Q-learning uses the Q-value update idea
— But relies on a stochastic (on-line, sample by sample) update

Q(s.a) <« R(s,a)+y > P(s'|s,a) max Q(s',a')

IS replaced with
Q(s,a) « 1—a)Q(s,a) + a(r(s, a) +y max Q(s’, a'))

r(s,a) -reward received from the environment after
performing an action a in state s

S' - new state reached after action a

o - learning rate, a function of N,
- a number of times a executed at s

CS 2750 Machine Learning

Q-learning

The on-line update rule is applied repeatedly during direct
Interaction with an environment

Q-learning

Initialize Q(s,a) =0 for all s,a pairs

observe current state s

repeat
select action a ; use some exploration/exploitation schedule
receive reward r
observe next state s’
update Q(s,a) « (1—a)Q(s,a)+ a(r +y max Q(s', a'))
setstos’

end repeat

CS 2750 Machine Learning

Q-learning convergence

The Q-learning iIs guaranteed to converge to the optimal Q-
values under the following conditions:

« Every state is visited and every action in that state is tried
Infinite number of times

— This i1s assured via exploration/exploitation schedule
» The sequence of learning rates for each Q(s,a) satisfies:

o0 o0

1L D a()=w 2. > a(i)?<w

=1 =1

a(n(s,a)) - Isthe learning rate for the nth trial of (s,a)

CS 2750 Machine Learning

Exploration vs. Exploitation

 Inthe RL with the delayed rewards

— At any point in time the learner has an estimate of Q(x, a)
for any state action pair

 Dilemma:

— Should the learner use the current best choice of action
(exploitation) A
7 (X) =arg max Q(x,a)

acA

— Or choose other action a and further improve its estimate of
Q(x,a) (exploration)

« EXxploration/exploitation strategies
— Uniform exploration
— Boltzman exploration

CS 2750 Machine Learning

Q-learning speed-ups

The basic Q-learning rule updates may propagate distant
(delayed) rewards very slowly

Example:

Goal: a high reward state

To make the correct decision we need all Q-values for the

current position to be good

Problem:

— In each run we back-propagate values only ‘one-step’ back.
It takes multiple trials to back-propagate values multiple
steps.

CS 2750 Machine Learning

Q-learning speed-ups
« Remedy: Backup values for a larger number of steps

Rewards from applying the policy
q _r+7/rt+1+7/ t+2 Z?/ r:[+|
We can substitute (immediate rewards with n-step rewards):

Z?/ rt+|+7/ maXQt+n(S a)

1=0
Postpone the update for n steps and update with a longer
trajectory rewards

Qi (5:8) < Q. (s @) +la," —Qun (s, @)

Problems: - larger variance
- exploration/exploitation switching

- wait n steps to update

CS 2750 Machine Learning

Q-learning speed-ups

« One step vs. n-step backup

Problems with n-step backups:

- larger variance

- exploration/exploitation switching
- wait n steps to update

CS 2750 Machine Learning

Q-learning speed-ups

« Temporal difference (TD) method
— Remedy of the walit n-steps problem
— Partial back-up after every simulation step
 Similar idea: weather forecast adjustment

Different versions of this idea has been implemented

CS 2750 Machine Learning

RL successes

« Reinforcement learning is relatively simple

— On-line techniques can track non-stationary environments
and adapt to its changes

 Successful applications:

— TD Gammon — learned to play backgammon on the
championship level

— Elevator control
— Dynamic channel allocation in mobile telephony
— Robot navigation in the environment

CS 2750 Machine Learning

