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Schedule 

Final exam: 

• April 18:   1:00-2:15pm, in-class 

 

Term projects 

• April 23 & April 25:  at 1:00 - 2:30pm  

     in CS seminar room 
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Ensemble methods 

• Mixture of experts 

– Multiple ‘base’ models (classifiers, regressors), each covers 
a different part (region) of the input space 

• Committee machines: 

– Multiple ‘base’ models (classifiers, regressors), each covers 
the complete input space 

– Each base model is trained on a slightly different train set  

– Combine predictions of all models to produce the output 

• Goal: Improve the accuracy of the ‘base’ model 

– Methods: 

• Bagging 

• Boosting 

• Stacking (not covered) 
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Bagging algorithm 

• Training 

– In each iteration t, t=1,…T 

• Randomly sample with replacement N samples from the 
training set 

• Train a chosen “base model” (e.g. neural network, 
decision tree) on the samples 

• Test 

– For each test example 

• Start all trained base models 

• Predict by combining results of all T trained models: 

– Regression:  averaging 

– Classification: a majority vote 
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Simple Majority Voting 

Final 

Class “yes” 

H1 

H3 

Test examples 

Class “no” 

H2 
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• Expected error= Bias+Variance 

– Expected error is the expected discrepancy between the 
estimated and true function 

     

     

– Bias is squared discrepancy between averaged 
estimated and true function 

 

 

– Variance is expected divergence of the estimated 
function vs. its average value 

 

 

 

Analysis of Bagging 

      2ˆ XfEXfE 

       2ˆ XfEXfE 

      2ˆˆ XfEXfE 
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When Bagging works? 
Under-fitting and over-fitting 

• Under-fitting: 

– High bias (models are not 
accurate) 

– Small variance  (smaller 
influence of examples in the 
training set) 

• Over-fitting: 

– Small bias (models flexible 
enough to fit well to training 
data) 

– Large variance  (models 
depend very much on the 
training set)  
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When Bagging works  

 
• Main property of Bagging (proof omitted) 

– Bagging decreases variance of the base model without 
changing the bias!!! 

– Why? averaging! 

• Bagging typically helps  

– When applied with an over-fitted base model 

• High dependency on actual training data 

• It does not help much 

– High bias. When the base model is robust to the 
changes in the training data (due to sampling) 

 

 

 



 

CS 2750 Machine Learning 

 

Boosting  

 
• Mixture of experts  

– One expert per region 

– Expert switching 

• Bagging 

– Multiple models on the complete space, a learner is not 
biased to any region 

– Learners are learned independently 

• Boosting 

– Every learner covers the complete space 

– Learners are biased to regions not predicted well by other 
learners 

– Learners are dependent  
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Boosting. Theoretical foundations. 

• PAC:  Probably Approximately Correct framework 

– (-) solution 

• PAC learning: 

– Learning   with    pre-specified error   and          
confidence  parameters 

– the probability that the misclassification error is larger 
than  is smaller than   

 

 

• Accuracy (1- ): Percent of correctly classified samples in test 

• Confidence (1- ): The probability that in one experiment 
some accuracy will be achieved 

 

  ))(( cMEP

)1()1)((  cAccP
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PAC Learnability 

Strong (PAC) learnability: 

• There exists a learning algorithm that efficiently learns the 
classification with a pre-specified accuracy and confidence 

Strong (PAC) learner:   

• A learning algorithm P that given an arbitrary 

– classification error  (< 1/2), and 

– confidence   (<1/2) 

• Outputs a classifier that satisfies this parameters 

– In other words gives: 

•  classification accuracy   > (1-)  

•  confidence probability  > (1- ) 

– And runs in time polynomial in 1/ , 1/  

• Implies: number of samples N is polynomial in 1/ , 1/ 
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Weak Learner 

Weak learner: 

• A learning algorithm (learner) W that gives:  

– a classification accuracy  > 1-o 

– with probability >1- o 

• For some fixed and uncontrollable 

– error o (<1/2)  

– confidence o (<1/2) 

and this on an arbitrary distribution of data entries 
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Weak learnability=Strong (PAC) learnability 

• Assume there exists a weak learner 

– it is better that a random guess (> 50 %) with confidence 
higher than 50 % on any data distribution 

• Question: 

– Is the problem also PAC-learnable? 

– Can we generate an algorithm P that achieves an arbitrary 
(-) accuracy? 

• Why is important? 

– Usual classification methods (decision trees, neural nets), 
have specified, but uncontrollable performances.  

– Can we improve performance to achieve any pre-specified 
accuracy (confidence)? 
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Weak=Strong learnability!!! 

• Proof due to R. Schapire 

An arbitrary (-) improvement is possible 

 

Idea: combine multiple weak learners together 

– Weak learner W with confidence o and maximal  error o  

– It is possible: 

• To improve (boost) the confidence 

• To improve (boost) the accuracy 

   by training different weak learners on slightly different 

datasets 
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Boosting accuracy 
Training 

Distribution samples 

H1 and H2 classify differently 

Correct classification 

Wrong classification 

H3 

H1 

H2 

Learners 
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Boosting accuracy 

• Training 

– Sample randomly from the distribution of examples  

– Train hypothesis H1.on the sample 

– Evaluate accuracy of H1 on the distribution 

– Sample randomly such that for the half of samples H1. 

provides correct, and for another half, incorrect results; 
Train hypothesis H2. 

– Train H3 on samples from the distribution where H1 and 
H2 classify differently 

• Test 

– For each example, decide according to the majority vote 
of H1, H2 and H3 
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Theorem 

• If each hypothesis has an error < o, the final ‘voting’ 

classifier has error  < g(o) =3 o
2- 2o

3 

• Accuracy improved !!!! 

• Apply recursively to get to the target accuracy !!! 
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Theoretical Boosting algorithm 

• Similarly to boosting the accuracy we can boost the confidence  
at some restricted accuracy cost 

• The key result: we can improve both the accuracy and 
confidence 

 

• Problems with the theoretical algorithm 

– A good (better than 50 %) classifier on all distributions and 
problems 

– We cannot properly sample from data-distribution 

– The method requires a large training set 

• Solution to the sampling problem: 

– Boosting by sampling  

• AdaBoost algorithm and variants 
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AdaBoost 

• AdaBoost: boosting by sampling 

 

• Classification (Freund, Schapire; 1996) 

– AdaBoost.M1  (two-class problem) 

– AdaBoost.M2  (multiple-class problem) 

 

•  Regression (Drucker; 1997) 

– AdaBoostR 
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AdaBoost 
• Given:  

– A training set of N examples (attributes + class label pairs) 

– A “base” learning model  (e.g.  a decision tree, a neural 
network) 

• Training stage: 

– Train a sequence of  T “base” models on T different sampling 
distributions defined upon the training set (D) 

– A sample distribution Dt for building the model t is 
constructed  by modifying the sampling distribution Dt-1 from 
the (t-1)th step.  

• Examples classified incorrectly in the previous step 
receive higher weights in the new data (attempts to cover 
misclassified samples)  

• Application (classification) stage: 

– Classify according to the weighted majority of classifiers 
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AdaBoost training 

   . Training 

 data 

Learn Distribution Test 

D1 Model 1 Errors 1 

D2 Model 2 Errors 2 

DT Model T Errors T 

… 
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AdaBoost algorithm 

Training (step t) 

• Sampling Distribution  

         - a probability that example i from the original 

training dataset is selected            

                        for the first step (t=1) 

• Take K samples from the training set according to   

• Train a classifier ht on the samples 

• Calculate the error        of  ht : 

• Classifier weight:  

• New sampling distribution 
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AdaBoost. Sampling Probabilities 

- Nonlinearly separable binary classification 

- NN as week learners 

Example: 
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AdaBoost: Sampling Probabilities 
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AdaBoost classification  
 

• We have T different  classifiers h t 

– weight wt of the classifier is proportional to its accuracy on 

the training set 

 

 

• Classification: 

For every class j=0,1 

• Compute the sum of weights w corresponding to ALL 

classifiers that predict class j; 

• Output class that correspond to the maximal sum of 

weights (weighted majority) 
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• Classifier 1            “yes”          0.7 

• Classifier 2            “no”                      0.3 

• Classifier 3            “no”                      0.2 

 

 

 

• Weighted majority   “yes” 

 

 

• The final choose is “yes”    +  1 

 

Two-Class example. Classification. 

0.7  - 0.5 =  + 0.2 
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What is boosting doing? 

• Each classifier specializes on a particular subset of examples 

• Algorithm is concentrating on “more and more difficult” 

examples 

• Boosting can: 

– Reduce variance (the same as Bagging) 

– But also to eliminate the effect of high bias of the weak 

learner (unlike Bagging) 

• Train versus test errors performance: 

– Train errors can be driven close to 0 

– But test errors do not show overfitting 

• Proofs and theoretical explanations in a number of papers  
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Boosting. Error performances 
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Test error
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Model Averaging 

• An alternative to combine multiple models: can be used for 

supervised and unsupervised frameworks 

• For example:  

– Likelihood of the data can be expressed by averaging over 

the multiple models 

 

 

– Prediction:   
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