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Schedule

Final exam:
« April 18: 1:00-2:15pm, in-class

Term projects
« April 23 & April 25: at 1:00 - 2:30pm
In CS seminar room
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Ensemble methods

« Mixture of experts

— Multiple ‘base’ models (classifiers, regressors), each covers
a different part (region) of the input space

« Committee machines:

— Multiple ‘base’ models (classifiers, regressors), each covers
the complete input space

— Each base model is trained on a slightly different train set
— Combine predictions of all models to produce the output
» Goal: Improve the accuracy of the ‘base’ model
— Methods:
« Bagging
 Boosting
» Stacking (not covered)
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Bagging algorithm

« Training
— In each iteration t, t=1,...T

» Randomly sample with replacement N samples from the
training set

 Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

« Test
— For each test example
» Start all trained base models
* Predict by combining results of all T trained models:
— Regression: averaging
— Classification: a majority vote
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Simple Majority Voting

Test examples

N —

Class “yes”

- Class “no”
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Analysis of Bagging

« EXpected error= Bias+Variance

— Expected error is the expected discrepancy between the
estimated and true function

E[(f(x)— E[f (X )])2]

— Bias i1s squared discrepancy between averaged
estimated and true function

([ELFOO]-E[f(x)])?

— Variance Is expected divergence of the estimated
function vs. its average value

E[(f(x)—E[f(x)])Z]
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« Under-fitting:

— High bias (models are not

accurate)

— Small variance (smaller 05}
Influence of examples in the

training set)
» QOver-fitting:

— Small bias (models flexible .

enough to fi
data)

— Large variance (models 2
depend very much on the

training set)

When Bagging works?
Under-fitting and over-fitting
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When Bagging works

« Main property of Bagging (proof omitted)

— Bagging decreases variance of the base model without

changing the bias!!!

— Why? averaging!
« Bagging typically helps

— When applied with an over-fitted base model

 High dependency on actual training data

* |t does not help much

— High bias. When the base model is robust to the
changes in the training data (due to sampling)
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Boosting

« Mixture of experts
— One expert per region
— Expert switching
« Bagging
— Multiple models on the complete space, a learner is not
biased to any region
— Learners are learned independently
« Boosting
— Every learner covers the complete space

— Learners are biased to regions not predicted well by other
learners

— Learners are dependent
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Boosting. Theoretical foundations.

PAC: Probably Approximately Correct framework
— (&-8) solution
PAC learning:

— Learning with pre-specified error € and
confidence & parameters

— the probability that the misclassification error is larger
than g is smaller than 6

P(ME(C) > &) <&

Accuracy (1-¢ ): Percent of correctly classified samples in test

Confidence (1-6 ): The probability that in one experiment
some accuracy will be achieved

P(Acc(c)>1—¢&)>(1—0)
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PAC Learnability

Strong (PAC) learnability:

« There exists a learning algorithm that efficiently learns the
classification with a pre-specified accuracy and confidence

Strong (PAC) learner:
« A learning algorithm P that given an arbitrary
— classification error ¢ (< 1/2), and
— confidence 6 (<1/2)
 Qutputs a classifier that satisfies this parameters
— In other words gives:
o classification accuracy > (1-¢)
» confidence probability > (1- 9)
— And runs in time polynomial in 1/ §, 1/¢
 Implies: number of samples N is polynomial in 1/ 5, 1/
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Weak Learner

Weak learner:
« A learning algorithm (learner) W that gives:
— a classification accuracy > 1-g,
— with probability >1- 5,
« For some fixed and uncontrollable
— error g, (<1/2)
— confidence 9§, (<1/2)
and this on an arbitrary distribution of data entries
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Weak learnability=Strong (PAC) learnability

e Assume there exists a weak learner

— It Is better that a random guess (> 50 %) with confidence
higher than 50 % on any data distribution

« Question:
— Is the problem also PAC-learnable?

— Can we generate an algorithm P that achieves an arbitrary
(e-0) accuracy?
« Why is important?
— Usual classification methods (decision trees, neural nets),
have specified, but uncontrollable performances.

— Can we improve performance to achieve any pre-specified
accuracy (confidence)?
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Weak=Strong learnability!!!

* Proof due to R. Schapire
An arbitrary (e-8) Improvement is possible

Idea: combine multiple weak learners together
— Weak learner W with confidence 6, and maximal error ¢,
— It is possible:
» To improve (boost) the confidence
» To improve (boost) the accuracy

by training different weak learners on slightly different
datasets
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Boosting accuracy
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Boosting accuracy

« Training
— Sample randomly from the distribution of examples
— Train hypothesis H, on the sample
— Evaluate accuracy of H; on the distribution

— Sample randomly such that for the half of samples H,
provides correct, and for another half, incorrect results;
Train hypothesis H,.

— Train H; on samples from the distribution where H, and
H, classify differently

e Test

— For each example, decide according to the majority vote
of H,, H, and H,
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Theorem

If each hypothesis has an error < ¢, the final ‘voting’
classifier has error < g(g,) =3 g,%- 2¢3

Accuracy improved !!!!
Apply recursively to get to the target accuracy !!!
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Theoretical Boosting algorithm

Similarly to boosting the accuracy we can boost the confidence
at some restricted accuracy cost

The key result: we can improve both the accuracy and
confidence

Problems with the theoretical algorithm

— A good (better than 50 %) classifier on all distributions and
problems

— We cannot properly sample from data-distribution
— The method requires a large training set
Solution to the sampling problem:
— Boosting by sampling
» AdaBoost algorithm and variants
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AdaBoost

« AdaBoost: boosting by sampling

 Classification (Freund, Schapire; 1996)
— AdaBoost.M1 (two-class problem)
— AdaBoost.M2 (multiple-class problem)

« Regression (Drucker; 1997)
— AdaBoostR
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AdaBoost

« Given:
— Atraining set of N examples (attributes + class label pairs)

— A “base” learning model (e.g. a decision tree, a neural
network)

 Training stage:
— Train a sequence of T “base” models on T different sampling
distributions defined upon the training set (D)

— A sample distribution D, for building the model t is
constructed by modifying the sampling distribution D, ; from
the (t-1)th step.

« Examples classified incorrectly in the previous step
receive higher weights in the new data (attempts to cover
misclassified samples)

« Application (classification) stage:
— Classify according to the weighted majority of classifiers
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AdaBoost training

Distribution Learn Test
Training 1Dy | Model 1 Errors 1
data .
D, Model 2 Errors 2
v
D, Model T Errors T
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AdaBoost algorithm

Training (step t)
» Sampling Distribution D,
D, (1) - aprobability that example i from the original
training dataset is selected
D, (1) =1/ N for the first step (t=1)
- Take K samples from the training set accordingto D,
 Train a classifier h, on the samples
« Calculate the error g, of h,: g = > D)
+ Classifier weightt B, =g /(1—g, ) 0™
« New sampling distribution
Dt+1 (I) _ Dt (') » {/Bt ht (Xi) :_ Yi
Z 1 otherwise

_/

Norm. constant
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AdaBoost: Sampling Probabilities
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AdaBoost classification

« We have T different classifiers h

— weight w, of the classifier is proportional to its accuracy on
the training set

w, =log(1/ B,) =log(l— &)/ &)
L =& /Q—¢&)
 Classification:
For every class j=0,1

« Compute the sum of weights w corresponding to ALL
classifiers that predict class |,

 Qutput class that correspond to the maximal sum of
weights (weighted majority)

N inai (X) = arg max Zwt

I th (0=]
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Two-Class example. Classification.

Classifier 1 “yes” 0.7
Classifier 2 “no” 0.3
Classifier 3 “no” 0.2
Weighted majority “yes” I I
0.7 -05= +0.2

The final choose 1s “yes” + 1
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What Is boosting doing?

Each classifier specializes on a particular subset of examples

Algorithm 1s concentrating on “more and more difficult”
examples

Boosting can:
— Reduce variance (the same as Bagging)

— But also to eliminate the effect of high bias of the weak
learner (unlike Bagging)

Train versus test errors performance:
— Train errors can be driven close to O
— But test errors do not show overfitting
Proofs and theoretical explanations in a number of papers
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Model Averaging

« An alternative to combine multiple models: can be used for
supervised and unsupervised frameworks

* For example:

— Likelihood of the data can be expressed by averaging over
the multiple models

P(D)=> P(D|M =m)P(M =m,)
— Prediction:

P(y|x) =ZP(YI X, M =m)P(M =m;)
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