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Gaussian mixture model 
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Mixture of Gaussians 

• Density function for the Mixture of Gaussians model 
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Gaussian mixture model 

Probability of occurrence of  a data example  x   

is modeled as 

 

 

where 

 

          =  probability of a data point coming  

              from class C=i  

 

          = class conditional density (modeled as a Gaussian) 

              for class i 

Remember: C  is hidden !!!! 
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Generative classifier model 

• Generative classifier model with Gaussian densities 

• Assume the class labels are known. The ML estimate is 
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Gaussian mixture model 

• In the Gaussian mixture Gaussians are not labeled 

• We can apply EM algorithm: 

– re-estimation based on the class posterior 
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Gaussian mixture algorithm 

• Special case: fixed covariance matrix for all hidden groups 

(classes) and a uniform prior on classes 

• Algorithm: 

Initialize means        for all classes i 

Repeat two steps until no change in the means: 

1. Compute the class posterior for each Gaussian and each 

point (a kind of responsibility for a Gaussian for a point) 

 

 

2. Move the means of the Gaussians to the center of the data, 

weighted by the responsibilities   

iμ

Responsibility: 

New mean: 
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K-means approximation to EM 

Mixture of Gaussians with the fixed covariance matrix: 

• posterior measures the responsibility of a Gaussian for every point 

 

 

 

• Re-estimation of means: 

 

• K- Means approximations 

• Only the closest Gaussian is made responsible for a point 

 

 

 

• Results in moving the means of  Gaussians to the center of the 

data points it covered in the previous step 
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K-means algorithm 

K-Means algorithm: 

Initialize k values of means (centers) 

Repeat two steps until no change in the means: 

– Partition the data according to the current means (using 

the similarity measure) 

– Move the means to the center of the data in the current 

partition 

 

• Used frequently for clustering data 
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Clustering 

Groups together “similar” instances in the data sample 

 

Basic clustering problem: 

• distribute data into k different groups such that data points 
similar to each other are in the same group  

• Similarity between data points is defined in terms of some 
distance metric (can be chosen) 

 

Clustering is useful for: 

• Similarity/Dissimilarity  analysis 

Analyze what data points in the sample are close to each other  

• Dimensionality reduction  

High dimensional data replaced with a group (cluster) label 

 

 

 

 


