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Density estimation 

Data:  

 

Attributes: 

• modeled by random variables                                     with: 

– Continuous values 

– Discrete values 

 E.g. blood pressure with numerical values  

    or chest pain with discrete values  

      [no-pain, mild, moderate, strong] 

Underlying true probability distribution: 
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Density estimation 

Data:  

 

 

Objective:  try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D 

 

 

 

 

 

Standard (iid) assumptions: Samples  

• are independent of each other 

• come from the same (identical) distribution (fixed          )  
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Learning via parameter estimation 

In this lecture we consider parametric density estimation  

Basic settings: 

• A set of random variables  

• A model of the distribution over variables in X 

 with parameters       :  

 

• Data 

 

Objective: find the parameters        that explain best the observed 

data 
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Parameter estimation  

• Maximum likelihood (ML) 

 

– yields: one set of parameters  

– the target distribution is approximated as: 

 

• Bayesian  parameter estimation 

– uses the posterior distribution over possible parameters 

 

 

– Yields: all possible  settings of          (and their “weights”)  

– The target distribution is approximated as:  
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Parameter estimation 

Other possible criteria: 

• Maximum a posteriori probability (MAP) 

 

– Yields: one set of parameters 

– Approximation:  

 

• Expected value of the parameter 

 

– Expectation taken with regard to posterior 

– Yields: one set of parameters 

– Approximation: 

maximize ),|( Dp Θ (mode of the posterior) 
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Density estimation 

• So far we have covered density estimation for “simple” 
distribution models: 

– Bernoulli 

– Binomial 

– Multinomial 

– Gaussian 

– Poisson 

But what if:  

• The dimension of                                      is large 

– Example: patient data 

• Compact parametric distributions do not seem to fit the data 

– E.g.: multivariate Gaussian may not fit 

• We have only a “small” number of examples to do accurate 
parameter estimates  
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How to learn complex distributions 

 How to learn complex multivariate distributions            with large 

number of variables? 

 

One solution: 

• Decompose the distribution using conditional independence 

relations  

• Decompose the parameter estimation problem to a set of 

smaller parameter estimation tasks 

 

Decomposition of distributions under conditional independence 

assumption is the main idea  behind Bayesian belief networks  

)(ˆ Xp
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Example 

Problem description: 

• Disease: pneumonia 

• Patient symptoms (findings, lab tests): 

– Fever, Cough, Paleness, WBC (white blood cells) count, 

Chest pain, etc. 

Representation of a patient case:  

• Symptoms and disease are represented as random variables 

Our objectives:  

• Describe a multivariate distribution representing the 

relations between symptoms and disease  

• Design of inference and learning procedures for the 

multivariate model   
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Modeling uncertainty with probabilities 

• Full joint distribution:  

– Assume                                     are all random variables that 

define the domain 

– Full joint:              or    

 

Full joint it is sufficient to do any type of probabilistic  

inference: 

• Computation of joint probabilities for sets of variables  

 

• Computation of conditional probabilities 

 

 

},,,{ 21 dXXX X

)(XP ),,,( 21 dXXXP 

),,( 321 XXXP ),( 101 XXP

),|( 321 FalseXTrueXXP 



 

CS 2750 Machine Learning 

 

Marginalization 

Joint probability distribution (for a set variables) 

• Defines probabilities for all possible assignments to values of 

variables in the set 

 

 

 

 

)(WBCcountP

005.0 993.0 002.0

),( WBCcountpneumoniaP

high normal low

Pneumonia
True

False

WBCcount
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0042.0

0001.0

9929.0
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0019.0

)(PneumoniaP

001.0
999.0

Marginalization (summing of rows, or columns) 

   - summing out variables 

table32



 

CS 2750 Machine Learning 

 

Variable independence 

• The joint distribution over a subset of variables can be 

always computed from the joint distribution through 

marginalization  

• Not the other way around !!!  

– Only exception: when variables are independent 
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Conditional probability 

Conditional probability : 

• Probability of A given B 

 

 

• Conditional probability is defined in terms of joint probabilities 

• Joint probabilities can be expressed in terms of conditional 

probabilities 

 

 

• Conditional probability – is useful for various probabilistic 

inferences  
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Inference 

Any query  can be computed from the full joint distribution !!! 

• Joint over a subset of variables  is obtained through 

marginalization 

 

 

• Conditional probability over a set of variables, given  other 

variables’ values is obtained through marginalization and 

definition of conditionals  
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Inference 

 

• Any joint probability can be expressed as a product of 

conditionals via the chain rule.  

 

 

 

 

 

• It is often easier to define the distribution in terms of conditional 

probabilities: 

– E.g.  
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Modeling uncertainty with probabilities 

• Full joint distribution: joint distribution over all random 
variables defining the domain 

–  it is sufficient to represent the complete domain and to do 
any type of probabilistic  inferences  

 

Problems: 

– Space complexity. To store full joint distribution requires 
to remember             numbers. 

     n – number of random variables, d – number of values 

– Inference complexity. To compute some queries requires        
.            steps.  

– Acquisition problem. Who is going to define all of the 
probability entries?        

 )(dnO
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Pneumonia example. Complexities. 

• Space complexity.  

– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F) 

– Number of assignments: 2*2*2*3*2=48 

– We need to define at least 47 probabilities. 

• Time complexity. 

– Assume we need to compute the probability of 

Pneumonia=T from the full joint 

 

 

 

– Sum over 2*2*3*2=24 combinations 
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Bayesian belief networks (BBNs) 

Bayesian belief networks.  

• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters.  

• Take advantage of conditional and marginal independences 

among random variables 

 

• A and B are independent 

 

• A and B are conditionally independent given C 
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