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Administration

Study material
» Handouts, your notes and course readings
* Primary textbook:

|

— Chris. Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.
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Administration

Study material
¢ Other books:

— Friedman, Hastie, Tibshirani. Elements of statistical
learning. Springer, 2001.

— Duda, Hart, Stork. Pattern classification. 2" edition. J
Wiley and Sons, 2000.

— C. Bishop. Neural networks for pattern recognition. Oxford
U. Press, 1996.

— T. Mitchell. Machine Learning. McGraw Hill, 1997
— J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2001.
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Administration

Homeworks: weekly

— Programming tool: Matlab (CSSD machines and labs)

— Matlab Tutorial: next week

Exams:

— Midterm (March)

— Final (April 16-20)

Final project:

— Written report + Oral presentation
(April 23-27)

Lectures:

— Attendance and Activity
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Tentative topics

Introduction to Machine Learning

Density estimation.

Supervised Learning.

— Linear models for regression and classification.

— Multi-layer neural networks.

— Support vector machines. Kernel methods.
Unsupervised Learning.

— Learning Bayesian networks.

— Latent variable models. Expectation maximization.
— Clustering
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Tentative topics (cont)

» Dimensionality reduction.

— Feature extraction.

— Principal component analysis (PCA)
» Ensemble methods.

— Mixture models.

— Bagging and boosting.
» Reinforcement learning
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Machine Learning

» The field of machine learning studies the design of computer
programs (agents) capable of learning from past experience or
adapting to changes in the environment

» The need for building agents capable of learning is everywhere
— predictions in medicine,

text and web page classification,

speech recognition,

image/text retrieval,

commercial software
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Learning

Learning process:

Learner (a computer program) processes data D representing
past experiences and tries to either develop an appropriate
response to future data, or describe in some meaningful way
the data seen

Example:

Learner sees a set of patient cases (patient records) with
corresponding diagnoses. It can either try:

— to predict the presence of a disease for future patients
— describe the dependencies between diseases, symptoms
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Types of learning

Supervised learning

— Learning mapping between input x and desired output y
— Teacher gives me y’s for the learning purposes
Unsupervised learning

— Learning relations between data components

— No specific outputs given by a teacher

Reinforcement learning

— Learning mapping between input x and desired output y

— Critic does not give me y’s but instead a signal
(reinforcement) of how good my answer was

Other types of learning:
— Concept learning, Active learning
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Supervised learning

Data: D={d,,d,,...,d,} asetofnexamples
d; =<X;,y; >
X; IS input vector, and y is desired output (given by a teacher)

Objective: learn the mapping f : X =Y
st. y,= f(x;) forall i=1.,n
Two types of problems:
* Regression: X discrete or continuous —
Y is continuous
» Classification: X discrete or continuous —
Y is discrete
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Supervised learning examples

Regression: Y is continuous

Debt/equity
Earnings _— company stock price
Future product orders

Classification: Y is discrete
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Unsupervised learning

 Data: D={d,,d,,.d}
d, =X; vector of values
No target value (output) y

* Objective:
— learn relations between samples, components of samples

Types of problems:
e Clustering

Group together “similar” examples, e.g. patient cases
» Density estimation

— Model probabilistically the population of samples
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Unsupervised learning example

* Clustering. Group together similar examples  d. =x,
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Unsupervised learning example

Clustering. Group together similar examples  d. =x,
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Unsupervised learning example

Density estimation. We want to build the probability model
P(x) of a population from which we draw examples d; = X;
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Unsupervised learning. Density estimation

* A probability density of a point in the two dimensional space
— Model used here: Mixture of Gaussians

Reinforcement learning

We want to learn: f: X =Y
We see samples of x but noty

Instead of y we get a feedback (reinforcement) from a critic
about how good our output was

input sample output
Learner

] reinforcement

Critic

» The goal is to select outputs that lead to the best reinforcement
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Learning: first look

* Assume we see examples of pairs (x, y) in D and we want to
learn the mapping f : X —Y to predict y for some future x

» We get the data D - what should we do?

10
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Learning: first look

« Problem: many possible functions f : X =Y exists for
representing the mapping between x and y

* Which one to choose? Many examples still unseen!
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Learning: first look

» Solution: make an assumption about the model, say,
f(x)=ax+b+¢
£=N(0,0) -random (normally distributed) noise
» Restriction to a linear model is an example of learnina bias

10

y /.+

-
sl .
*
o

CS 2750 Machine Learning

Learning: first look

» Bias provides the learner with some basis for choosing among
possible representations of the function.

* Forms of bias: constraints, restrictions, model preferences
* Important: There is no learning without a bias!
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Learning: first look

» Choosing a parametric model or a set of models is not enough
Still too many functions  f(x)=ax+b+¢ &=N(0,0)
— One for every pair of parameters a, b

y
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Fitting the data to the model

» We want the best set of model parameters
Objective: Find parameters that:
 reduce the misfit between the model M and observed data D
* Or, (in other words) explain the data the best
Objective function:
» Error function: Measures the misfit between D and M
« Examples of error functions:
— Average Square Error %IZ; (v, — £ (x)?

- - g - n
— Average misclassification error lz
yi=f(x)
n i
Average # of misclassified cases
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Fitting the data to the model

» Linear regression problem
— Minimizes the squared error function for the linear model
n
— minimizes lz (y; — f(x,))?
n 4
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Learning: summary

Three basic steps:

» Select a model or a set of models (with parameters)
E.gQ. y=ax+b

» Select the error function to be optimized

S NORRICO,

» Find the set of parameters optimizing the error function

— The model and parameters with the smallest error represent
the best fit of the model to the data

But there are problems one must be careful about ...
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