
1

Improving Observation-Based Testing with
Database Incorporation Heuristics

Gregory M. Kapfhammer

Abstract—Observation-based software testing techniques attempt to
identify defect-revealing software execution profiles from a large collection
of usage scenarios that have an unknown quality. The current observation-
based testing research pioneered by Dickinson et al., Leon et al., and
Podgurski et al. [4], [13], [16] employs unsupervised machine learning al-
gorithms, such as cluster analysis, to isolate important or meaningful test
cases. However, these existing techniques have not been applied to appli-
cations that interact with a database. In this paper, we briefly highlight
a data collection infrastructure that was developed to effectively capture
the execution of Java applications. Also, we evaluate the veracity of the
assumptions that underly current observation-based testing methods. Fur-
thermore, we describe some preliminary heuristics that attempt to incor-
porate an application’s interaction with a database into the input space
of the certain machine learning algorithms. Finally, we discuss the ex-
periments that were conducted to evaluate the usage of cluster analysis
for observation-based testing and the ability of our database incorporation
heuristics to improve the operation of these algorithms.

Index Terms—observation-based testing, unsupervised machine learn-
ing, cluster analysis, database-driven application testing

I. INTRODUCTION

BSERVATION-BASED testing is a testing technique that
uses software execution profiles to identify usage scenar-

ios that are likely to cause a system to fail. After execution
profiles have been gathered from the repeated execution of the
software system, these profiles are analyzed with a variety of
unsupervised machine learning algorithms. Dickinson et al,
Leon et al., and Podgurski et al. have used cluster analysis
and other multivariate data analysis techniques to select pro-
gram executions that are likely to cause a software system to
fail [4], [13], [16]. To date, none of the empirical analyses of the
aforementioned techniques have been conducted on an applica-
tion that frequently interacts with a database. Since an increas-
ing number of software applications are using proven relational
database technology to store information, it is important to de-
velop an observation-based testing approach that is customized
for these types of programs. After building a candidate appli-
cation, developing a data collection infrastructure, and extend-
ing existing cluster analysis algorithms, we have conducted sev-
eral empirical analyses to evaluate the theoretical foundations
of observation-based testing. Furthermore, we have developed
a number of heuristics that attempt to incorporate the behavior
of a stand-alone application when it uses a database. Finally,
we have examined the effectiveness of our proposed heuristics
in several empirical analyses.

In Section II-A we provide a brief review of software testing
terminology and a discussion of program spectra. Furthermore,
Section II-B offers an overview of current observation-based
software testing techniques. In Section II-C we review the con-

Department of Computer Science
Allegheny College, Meadville PA, 16335, USA
Email: gkapfham@allegheny.edu

cepts associated with cluster analysis and highlight the differ-
ent distance metrics and linkage techniques that can be used to
produce clusters in an input space. Also, Section III examines
the data collection infrastructure that was developed to support
the extraction of the input spaces for our unsupervised machine
learning algorithms. Next, we explain the experimental frame-
work that was employed during our examination of observation-
based testing in Section IV. Specifically, Section IV-A reviews
our candidate application and Section IV-B offers an overview
of our heuristics for incorporating database interaction informa-
tion into the cluster analysis process. Section IV-C describes
an experiment that attempted to determine if it was possible to
use cluster analysis to recognize similar usages of our candidate
application. Moreover, Section IV-D discusses an experiment
that was conducted to evaluate whether it was possible to ef-
fectively isolate anomalous program behavior by using cluster
analysis. In Section IV-E we examine the impact that our pro-
posed heuristics have on the quality of the resulting clusters of
the input space. Finally, Section V draws conclusions and offers
some promising avenues for future research.

II. PRELIMINARIES

A. Software Testing Review

Software testing techniques attempt to isolate defects in a
given software application. Software testing that is not exhaus-
tive can only reveal the existence of defects and cannot conclu-
sively prove the correctness of a software system [15]. How-
ever, the combinatorial explosion of test inputs clearly shows
that exhaustive testing is intractable. Figure 1 provides an ex-
ample of a methodology that could be employed during the test-
ing and analysis of an application that interacts with a database.

In this software testing methodology, a database seeder is
used to populate the database with acceptable values. Next, a
test case selector is used to chose the tests that will be most
likely to reveal defects and/or produce a confidence in the sys-
tem under test. In the observation-based testing paradigm, test
cases are selected from a large collection of execution profiles
of an unknown quality through the usage of cluster analysis al-
gorithms. After test case descriptions have been produced, it is
important to use a test case generator to create tests that can be
executed against the system under test. These test cases can be
used by a test executor to exercise the chosen application. The
results from the test execution phase are normally provided to
a test adequacy evaluator that attempts to analyze the “quality”
of the test cases. Also, the test results can be examined by a
test minimizer that discovers the “essence” of the test cases in
an attempt to improve the isolation and repair of defects. Fi-
nally, the current test suite can be used by a regression tester

2

Test Case Selector

Test Executor

2M1M nM

Adequacy
Measurements

2M1M nM

Adequacy
Measurements

Failure−Inducing
Test Minimization

T1 T2 Tn

T1 T2 Tk

Database Seeder

DatabaseSystem Under Test

Relational Schema

Test Case
Descriptions

Test Case Generator

Regression Tester

Adequacy Evaluator

Test Results

2 Rn1R R

R R1R 2 n

Test Results

Test Cases
Executable

Test Cases
Minimial

Fig. 1. A Methodology for Testing Database-Driven Applications.

that is responsible for assessing the impact that bug fixes and
new functionality have on the quality of the existing applica-
tion.

B. Observation-based Testing

According to Dickinson et al., observation-based testing is a
software testing technique that “permits a useful subset of test
cases to be selected from a large set of tests of unknown qual-
ity” [4]. Observation-based testing is distinctly different than
synthetic-based testing approaches that rely upon the manual or
automatic generation of test cases. However, it is important to
note that observation-based testing can only be effectively em-
ployed when a significant portion of the application under test is
available for execution. Current observation-based testing tech-
niques are governed by two assumptions. First, this approach to
software testing assumes that it is possible to adequately charac-
terize the execution behavior of a software system through the
usage of unsupervised machine learning algorithms like clus-
ter analysis [16]. Second, Podgurski et. al have suggested that
the unusual execution profiles revealed by cluster analysis (i.e.
those profiles that are located in small or singleton clusters) are
often related to application failure [16]. Dickinson et al. de-
scribe the application of cluster-based filtering algorithms that
attempt to isolate execution profiles that exercise the software
under test in a meaningful or unusual fashion [4].

Program spectra, or characterizations of program behavior,
can be used for many different software testing and analy-
sis purposes [8]. Different program spectra, such as control
flow, data flow, variable values, and event sequences informa-
tion can be used during observation-based testing analyses [4].
For example, path spectra include all of the execution paths that
were recorded during the observation of a program. Current
observation-based testing techniques coarsely characterize the
behavior of a software system by analyzing the spectra of exe-

cution counts for the methods within a given application [4]. It
is conceivable that the cluster analysis algorithms employed by
observation-based testing could rely upon the program spectra
of class usage counts. In [4] and [13], Dickinson et al. and Leon
et al. collect program spectra information by using the GNU
call coverage profiler, gprof. In [18], Steven et al. describe
an application called jRapture that can effectively capture a
number of different program spectra for an arbitrary Java appli-
cation.

C. Cluster Analysis

Cluster analysis can be classified as a form of unsupervised
machine learning. Han et al. note that clustering is technique
that attempts to group data into classes where all of the ob-
jects in a given cluster are similar [7]. In this report, we will
focus on hierarchical, agglomerative cluster analysis methods.
These types of cluster analysis algorithms create a hierarchy
of clustered objects that eventually belong to a single cluster
that contains the complete input space [7]. Since hierarchi-
cal cluster analysis is a distance-based statistical analysis tech-
nique, it is often profitable to normalize the input space in an
attempt to prevent high magnitude attributes from inappropri-
ately influencing the cluster formation process [2], [7]. After
the usage of input space normalization, the cluster analysis pro-
cedure computes the distance between the points in a data set
[17]. Once the distance information has been computed, differ-
ent linkage mechanisms are used to produce a hierarchical clus-
ter tree known as a dendrogram. This dendrogram graphically
depicts the iterative formation of clusters from existing items in
the input space or the already created clusters [17]. Clusters are
formed when horizontal lines are “grafted” onto the dendrogram
at the desired level(s) of distance. Since hierarchical clustering
approaches only make a single single pass over the input space,
they are fast, but potentially unable to produce meaningful clus-
terings [7].

Traditionally, cluster analysis algorithms consider the
�����

��� input matrix � as collection of
�

,
�
	�� ��� row vectors��
��
�������������
��� . Equation 1 expresses the Euclidean distance

between vectors ��� and ��� , while Equation 2 describes the City
Block distance between the same vectors. Other similarity met-
rics, such as Standardized Euclidean distance, Mahalanobis dis-
tance, and the Minkowski metric can also be used to compute
distance information [2], [9], [11], [17]. The Minkowski met-
ric is a generalization of the Euclidean and City Block distance
formulations. Generally, these two distance measurements are
most useful when they are applied to interval-scaled variables
[7].

��� � �����������! � ���#"$����� � ���#"$������% (1)

��&(' � ���)�*���+�! ,-.*/10325476 . " 498 . 2 (2)

The linkage algorithms employed by cluster analysis use in-
formation about the distance between items in a cluster to create
new clusters. Essentially, a linkage technique is responsible for

Kapfhammer: IMPROVING OBSERVATION-BASED TESTING WITH DATABASE INCORPORATION HEURISTICS 3

measuring the distance between two specific clusters of objects
in order to determine the clusters that will be produced dur-
ing the current iteration of a hierarchical clustering algorithm
[7]. There are several different approaches for computing the
distance between two of the current clusters in an input space.
Equation 3 through Equation 5 describe the single, complete,
and average linkage mechanisms, respectively. For a more de-
tailed review of other linkage techniques, such as centroid and
ward linkage, please refer to [2] and [3]. In our description of
these linkage mechanisms, we adapt the notation used in [2] and
[7]. Thus, we define � 6 to be the set of objects in cluster � and� 8 to be the set of objects in cluster � . For convenience, we
assume that ��� is a member of the singleton cluster � . if it is an
object that has not been assigned to a cluster. Moreover, we de-
note

� � ����� ����� as the distance between ��� and ��� as calculated
by an arbitrary distance metric.

� 8 , �
� � 6 � � 8 �!

��� �	��

������� ��������� � � � � �*� � � (3)

� &���� � � 6 � � 8 �
���

4 ��
�������� ��� ����� � � � � ��� � � (4)

�"!�# � � � 6 � � 8 �!
	�

2 � 6 2 $ 2 � 8)2 �
-

�
 ��� �
-

� � ��� � � � � � ��� � � (5)

It is possible for different combinations of distance and link-
age measurements to produce clusterings of differing levels of
quality. For example, a certain combination of distance and
linkage measurement techniques might produce a clustering of
several program execution profiles that more accurately cap-
tures the similarities or differences between the usages of the
program. However, all observation-based testing techniques as-
sume that cluster analysis will be applied to program execution
profiles that are of an unknown quality. Thus, it is generally
not possible to compare different combinations of distance and
linkage measurements by analyzing the semantic meaning of
the resulting clusters of program executions. However, it is pos-
sible to evaluate the quality of a specific clustering of an input
space through the calculation of the cophenetic correlation co-
efficient, which we denote % & .

Suppose that & is a vector storing the distances between ob-
jects in the input space. Furthermore, assume that ' is a vector
that contains the distances between the clusters that were pro-
duced during the linkage phase of cluster analysis. Finally, we
denote (*) and (,+ as the average of the distances in & and ' ,
respectively. Equation 6 describes the calculation of % & , which
attempts to measure the distortion in the resulting clusters [2].
From Equation 6, is it clear that % &.-0/ 1 � 	�2 . Traditionally, the
resultant cluster of the input space is considered to be of a “high
quality” when % & is very close to

	
[2]. Thus, higher values of% & indicate that the objects in the input space nicely fit into the

clustering that is described by the resulting dendrogram.

% & 35476 . � & 4 . " () � � ' 4 . " (+ �8
3 496 . � & 4 . " (,) �
: � ' 4 . " (,+ ��: (6)

III. DATA COLLECTION INFRASTRUCTURE

S stated in Section II-C, cluster analysis algorithms oper-
ate on an

��� � ��� input matrix � . Each one of the
�

rows in the input space corresponds to the collection of pro-
gram spectra for a given execution of a system under test. In
this report, we assume that the application that is subject to
the analyses required by observation-based testing is written in
the Java programming language. In order to support the col-
lection of program spectra from a Java-based application, we
developed a data collection infrastructure. Our data collection
tool relies upon aspect-oriented programming (AOP) structures
to collect method and class call counts spectra. Our data col-
lection infrastructure consists of approximately 1400 lines of
well-documented Java code that uses the AspectJ programming
language [12] and the log4j logging package [6] to record the
behavior of an application.

A. Aspect-Oriented Programming

The aspect-oriented programming paradigm facilitates the
implementation of functionality that bridges multiple classes in
a software system. In this paradigm, it is possible to express
an “aspect” that is composed of “pointcuts” that crosscut one or
more entities in a given application [5]. In the AOP paradigm,
it is possible for a single aspect to define a pointcut for all of the
methods is a specific class. For any given pointcut, it is possible
to specify before, after, and around advice [5], [12]. This ad-
vice can be used to include arbitrary computations at a specified
pointcut in an application. Aspect-oriented programming solu-
tions are often developed for applications that should contain
functionality that is pertinent to many classes inside of a given
software system. For example, it might be desirable to describe
the exception handling behavior for a collection of Java classes
as an aspect [14].

B. Data Collection Aspects

The AspectJ programming language can enable the pro-
duction of a data collection framework for Java applications.
Figure 2 shows a small portion of the AspectJ aspect called
Trace that enables the observation of our candidate appli-
cation. The first pointcut called observedClasses forces
all sub-aspects of the Trace aspect to define the classes that
should be subject to observation. For our purposes, it is im-
portant to ensure that all classes are subject to the observation
provided by our infrastructure. The pointcut executeMain
allows for inclusion of the data collection steps that must be
taken before and after the execution of the main() method
in our chosen application. Furthermore, the currentCon-
structor and currentMethod aspects enable us to col-
lect the appropriate program spectra information before and af-
ter the execution of every constructor and method in the classes
that have been selected for observation. For each of the defined
pointcuts, we used the log4j logging framework to record the
desired information in standard text files [6]. When the Trace
aspect was “woven” into our candidate application using the As-
pectJ compiler, we were able to transparently extract informa-
tion about the execution profiles of the program [12].

4

abstract pointcut observedClasses();

pointcut executeMain(): observedClasses() &&
execution(public static void main(String[]));

pointcut currentConstructor(): observed-
Classes() && execution(new(..));

pointcut currentMethod(): observedClasses() && exe-
cution(* *(..)) &&

!execution(public static void main(String[]));

Fig. 2. AspectJ Pointcuts in our Data Collection Infrastructure.

IV. EXPERIMENTAL FRAMEWORK

�
N the research discussed in this report, we were inter-
ested in evaluating the underlying assumptions of the

observation-based approach to software testing. Furthermore,
we wanted to determine if the incorporation of the database in-
teraction information could improve our ability to use cluster
analysis to isolate anomalous executions of a chosen software
system. To this end, we developed two heuristics for incorpo-
rating the state of a database that is used by a Java application.
Furthermore, we implemented a simple candidate application in
the Java programming language. Next, we used the observation
infrastructure described in Section III-B to collect the desired
information about the behavior of our application. In the ex-
periment described in Section IV-C, we evaluated the first as-
sumption of observation-based testing. That is, we attempted
to determine if cluster analysis was able to effectively group
similar usages of our candidate application. The experiment
discussed in Section IV-D examined the second assumption of
observation-based testing; namely, that it is possible to isolate
failure-inducing program executions by looking in small or sin-
gleton clusters of an input space. Finally, the experiment de-
scribed in Section IV-E attempted to evaluate the impact of our
database inclusion heuristics on the chosen cluster analysis al-
gorithms.

A. Candidate Application

We developed a simple simulation of an ATM system that
contains a graphical user interface. Our application is composed
of approximately 4,000 lines of well-documented Java code.
The ATM simulation was built and executed with the Java™
2 Platform, Standard Edition version 1.4.0. The application in-
teracts with a simple database that is managed by a free, open-
source, relational database management system called mySQL
[19]. Since the candidate program was written in Java, we used
the MM mySQL Java Database Connectivity (JDBC) driver to
access the information stored in the relational database [1]. The
implementation and usage of our candidate application was con-
ducted on a Debian GNU/Linux workstation with a 700 MHz
Celeron processor and 256 MB of RAM. In previous research,
Kapfhammer et al. have used this software system to address
the challenges that occur during attempts to identify and under-
stand problematic software components [10].

Figure 3 depicts the high-level architecture of our simple can-

ATM

Interaction
User

ATM User Bank Database

TransactionAgent Bank

Fig. 3. High-Level Architecture of the Candidate Application.

didate application. The ATM user interface prompts the user to
insert a “card” that describes the pertinent bank account infor-
mation. Next, the user is prompted for his/her personal identi-
fication number (PIN). Finally, the user is able to conduct any
number of transaction with his/her account. The currently sup-
ported transactions include the ability to deposit or withdraw
money, transfer money from one account to another, and check
the balance of an existing account. In the current implemen-
tation of our candidate application, we assume that all of the
entities in the system are running in a single address space.

B. Database State Incorporation Heuristics

We configured the observation infrastructure described in
Section III to collect method and class call count information.
Each time a method is used, we increment the method call count
for that method. Similarly, each invocation of a method inside
of a specific class causes the incrementation of the class call
count. We also augmented our observation infrastructure so that
it could monitor the usage of the methods and classes that ac-
tually interact with the mySQL database. Specifically, we col-
lected call count information for methods that had the potential
to either use or change the database. For our purposes, we as-
sumed that the categories of “using the database” and “changing
the database” were mutually exclusive. The method lockAc-
count is an example of a method provided by the Trans-
actionAgent that would be classified as an operation that
changed the database. However, the method checkBalance
would be considered a method that only uses the database. It is
important to note that the collection of usage counts for classes
and methods that interact with the database does not provide
for the inclusion of information about the state of the database.
However, we believe that the simple heuristic of including fea-
tures that characterize a program’s interaction with a database
should be evaluated before more complicated database state fea-
tures are examined.

C. Experiment One: Detecting Similar Execution Profiles

In our first experiment, we executed the candidate program
ten times and collected the respective execution profiles. Ta-
ble I describes the actions that were conducted as examples of
normal usage of our candidate application. In this experiment,
we created execution profiles such that a pair of executions were
deemed to exercise roughly the same functionality. For exam-
ple, in execution profiles

	
and � we simply started our candi-

Kapfhammer: IMPROVING OBSERVATION-BASED TESTING WITH DATABASE INCORPORATION HEURISTICS 5

date application and then immediately exited the program. Fur-
thermore, execution profiles 7 and 8 both performed a withdraw
on a specified bank account. However, execution profile 8 con-
tained the inappropriate selection of a primary savings account
that was not available to the holder of the ATM card.

Next, we performed cluster analysis with all combinations of
distance metrics and linkage techniques. Specifically, we fo-
cused on using the Euclidean and City Block distance metrics
and the single, complete, average, centroid, and ward linkage
mechanisms. After executing all possible configurations of our
cluster analysis algorithms, we examine the resulting dendro-
grams to determine if the similar executions were clustered to-
gether. Finally, we produced clusters of the input space with the
dendrogram by specifying thresholds for the inconsistency co-
efficient that governs clustering. For our clustering algorithms,
higher values of the inconsistency coefficient enable less similar
objects to be clustered together.

Figure 4 provides a dendrogram that graphically depicts the
iterative clustering of our input space when the City Block dis-
tance metric was combined with the single linkage mechanism.
In this example, our input space consisted of class usage counts
that were not augmented with our database inclusion heuristics.
When this dendrogram was clustered with an inconsistency co-
efficient of � � , almost every pair of similar profiles was placed
in a unique cluster. That is, the first three pairs of execution
profiles were place in their respective clusters. However, execu-
tion profile � was clustered with profile � and execution profile�

was clustered with profile
	 1 . This result is meaningful be-

cause profiles
�

and
	 1 both change the database and include

the inappropriate selection of a bank account while profiles �
and � change the database after correctly selecting the desired
account.

 1 2 3 4 5 6 7 9 8 10
0

10

20

30

40

50

60

70

80

Execution Profile Number

D
is

ta
nc

e

Fig. 4. Dendrogram that Illustrates the Clustering of Similar Execution Profiles.

Several combinations of distance metrics and linkage tech-
niques did not produce accurate characterizations of our sim-
ple input space. When the Euclidean distance metric was com-
bined with the single linkage technique and the class counts in-

put space was clustered with an inconsistency coefficient of � � ,
only two clusters were formed. The first cluster contained ex-
ecution profiles

	
and � and the second cluster contained the

remainder of the profiles. When the information about database
usage was incorporated into the cluster analysis process, the re-
sulting cluster were the same. Yet, when the call counts for
database changing methods were included in the input space,
the first six execution profiles were clustered correctly and the
final four profiles were collected in a single cluster. This re-
sult clearly indicates that the incorporation of our database state
heuristics can lead to improved clustering results.

However, we were also interested in determining if usage of
our database incorporation heuristics would improve or detract
from the quality of clustering when the City Block distance met-
ric was used. To this end, we incorporated all potential combi-
nations of database change and usage information into the in-
put space before executing our cluster analysis algorithms with
the City Block distance metric and all of the available linkage
techniques. For each of the possible combinations, the incorpo-
ration of database interaction information did not improve the
clusterings (which, as previously noted, were already of a very
high quality). Yet, it is important to note that the usage of our
database inclusion heuristics never reduced the apparent quality
of the clustering.

D. Experiment Two: Isolating Anomalous Execution Profiles

In our second experiment, we also executed our application
ten times. However, we required that eight of the execution pro-
files must represent normal executions of the candidate applica-
tion and that two of the executions must correspond to abnormal
usage patterns. Therefore, during the first execution of the ATM
simulation, we repeatedly input the name of our “ATM card” in
an inappropriate fashion. While this behavior did not crash the
ATM simulation, it did cause the ATM interface to lock in the
expected fashion. During the third execution of the ATM simu-
lation, we clicked on the “delete” key when we were prompted
to input our PIN number. In this situation, our candidate appli-
cation attempted to interpret the string “delete” as a number and
this inappropriate interpretation eventually caused a Number-
FormatException to be raised.

Figure 5 provides a dendrogram which clearly shows that the
first and third execution profiles are highly dissimilar from the
other executions of our candidate application. This dendrogram
was the result of the application of the Euclidean distance met-
ric and the single linkage technique on the class call counts in-
put space. As expected, the third execution was considered to
be more unusual than the first execution profile. When informa-
tion about database changes was included in the input space, the
resulting dendrogram isolates the abnormal executions in a less
stark fashion. However, when database usage information was
included in the cluster analysis, the unusual execution profiles
were still readily apparent.

E. Experiment Three: Evaluating Cluster Quality

The experiments described in Section IV-C and Section IV-
D provide anecdotal evidence that unsupervised machine learn-

6

Profile Number Execution Steps Notes

1 open � quit Variable movement of mouse
2 open � quit Variable movement of mouse, resized window
3 open � inputCard � quit Input PIN correctly
4 open � inputCard � quit Input PIN incorrectly
5 open � inputCard � checkBal � quit Selected existing primary checking account
6 open � inputCard � checkBal � quit Initially selected nonexistent secondary checking account
7 open � inputCard � withdraw � quit Selected existing primary checking account
8 open � inputCard � withdraw � quit Initially selected nonexistent primary savings account
9 open � inputCard � deposit � quit Selected existing primary checking account

10 open � inputCard � deposit � quit Initially selected nonexistent secondary checking account

TABLE I

DESCRIPTION OF PAIRS OF SIMILAR EXECUTION PROFILES.

 2 8 1 3 4 6 9 7 5 10
0

5

10

15

20

25

30

35

40

Execution Profile Number

D
is

ta
nc

e

Fig. 5. Dendrogram that Illustrates the Clustering of Mixed Execution Profiles.

ing algorithms like cluster analysis can be used to understand
the behavior of software systems. Moreover, these experi-
ments show that our simplistic heuristics for incorporating in-
formation about database interaction are promising. However,
observation-based testing efforts are normally conducted with
systems that contain thousands of executions of unknown qual-
ity [4], [13]. Since the intent of each execution is almost always
unknown, it is generally impossible to evaluate the effective-
ness of cluster analysis by means of a detailed, manual cluster
inspection. In our final experiment, we executed our candidate
application thirty times and measured the cophenetic correla-
tion coefficient for every combination of input space, distance
metric, and linkage approach.

Figure 6 shows the resulting measure of cluster quality for
varying configurations of the cluster analysis algorithm. Ten
measurements of the cophenetic correlation coefficient were
computed for different input spaces (represented by the group-
ings on the horizontal axis) and for different algorithm con-
figurations (represented by individual bars in each horizontal
axis grouping). We measured % & after using an input space

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
op

he
ne

tic
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t (
κ c)

Euc, Sng
Euc, Cmp
Euc, Avg
Euc, Cnd
Euc, Wrd
CBlk, Sng
CBlk, Cmp
CBlk, Avg
CBlk, Cnd
CBlk, Wrd

MC MC, UDB MC, CDB MC, TDB

Fig. 6. ��� for Different Cluster Analysis Configurations.

that was composed of just method counts, method counts and
database usage counts, method counts and database change
counts, and method counts with all database interaction counts.
When none of the information provided by our database incor-
poration heuristics was included in the input space, the values
for % & varied somewhat significantly based upon choices of dis-
tance measures and linkage mechanisms. When database inter-
action information was incorporated into the input space, the
overall quality of the resulting clusters decreased. However
when database change information was included in the input
space, the clustering algorithms appear to gain a measure of in-
dependence from their selected configuration. Similar, although
slightly less pronounced patterns emerged when we measure the
cophenetic correlation coefficient when the class count informa-
tion was used as the basis for the input space.

F. Threats to Validity

The main threat to validity for our experiments is the limited
number of case studies that were conducted. We only analyzed
the applicability of observation-based testing and database in-

Kapfhammer: IMPROVING OBSERVATION-BASED TESTING WITH DATABASE INCORPORATION HEURISTICS 7

corporation heuristics for a single application of limited com-
plexity. Each of the experiments were also limited by the size
of the input spaces that were subject to cluster analysis. Also,
the types of anomalous program behavior that were recorded
in the second experiment did not occur because of problematic
interaction with the relational database. Thus, our second ex-
periment did not provide an exceptional testing ground for our
heuristics that incorporate database interactions. While our fi-
nal experiment measured cluster quality through the calculation
of the cophenetic correlation coefficient, there is currently no
direct evidence that high values for % & will actually improve
observation-based testing efforts.

V. CONCLUSION AND FUTURE WORK

HE observation-based approach to software testing at-
tempts to isolate a small set of meaningful execution pro-

files from a large collection of unknown quality executions.
Current observation-based testing techniques are not specifi-
cally tailored for the testing and analysis of applications that
interact with databases. To this end, we have evaluated the un-
derlying assumptions of observation-based testing and proposed
two simple heuristics for incorporating database interaction into
the testing effort. Our experimental analyses have shown that
unsupervised machine learning algorithms like cluster analy-
sis can effectively group program executions that exhibit nor-
mal behavior. Furthermore, we have shown that cluster anal-
ysis has the potential to isolate execution profiles that induce
failure or exercise the application in an unusual fashion. More
importantly, we have demonstrated that the inclusion of infor-
mation about the interactions between a database-driven appli-
cation and a database can improve the results of cluster analy-
sis. We believe that our preliminary results indicate that current
heuristics for measuring database interaction and new heuristics
for incorporating database state have the potential to improve
the observation-based testing for database-driven programs.

In future research, we plan on extending our analysis to new
candidate applications. We believe that the incorporation of new
software systems will only require minimal modifications to our
data collection infrastructure. Furthermore, we are interested in
changing our characterization of the input space to include new
and different types of program spectra. Also, we feel that the
usage of larger input spaces will enable us to better assess the
effectiveness and scalability of our cluster analysis algorithms.
Moreover, we plan on proposing new heuristics that actually
incorporate the state of the database into the input space. For
example, the inclusion of access counts for specific tables in a
relational database could prove to be profitable. Alternatively, it
might be possible to incorporate information about the primary
key of the specific table row that was accessed during an inter-
action with the database. After cluster analysis, all observation-
based testing techniques must sample the input space for un-
usual or failure-inducing program executions. In future work,
we will implement several methods for the selection of execu-
tion profiles and empirically evaluate their effectiveness with
different configurations of the input space and the clustering al-
gorithms.

REFERENCES

[1] MM mySQL JDBC drivers. 2001. http://mmmysql.sourceforge.net/.
[2] MathWorks Corporation. Statistics toolbox. 2001.

http://www.mathworks.com/access/helpdesk/help/toolbox/stats/stats.shtml.
[3] Edward E. Cureton and Ralph B. D’Agostino. Factor Analysis: An Ap-

plied Approach. Lawrence Erlbaum Associates, Publishers, Hillsdale, NJ,
1983.

[4] William Dickinson, David Leon, and Andy Podgurski. Pursuing failure:
The distribution of program failures in a profile space. In Proceedings
of the 9th International Conference on the Foundations of Software Engi-
neering, pages 246–255. ACM Press, November 2001.

[5] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented pro-
gramming: An introduction. Communications of the ACM, 44(10):59–65,
October 2001.

[6] Apache Software Foundation. Jakarta log4j. 2002.
http://jakarta.apache.org/log4j/.

[7] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, San Fransisco, CA, 2000.

[8] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An empirical
investigation of program spectra. In Proceedings of the ACM/SIGSOFT
Workshop on Program Analysis and Software Tools and Engineering,
pages 83–90. ACM Press, June 1998.

[9] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statisti-
cal Analysis. Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[10] Gregory M. Kapfhammer, C.C. Michael, Jennifer Haddox, and Ryan
Colyer. An approach to identifying and understanding problematic COTS
components. In Proceedings of the 2nd International Software Assurance
and Certification Conference, Reston, Virginia, September 2000.

[11] Maurice Kendall. Multivariate Analysis. MacMillian Publishing Co, Inc.,
New York, NY, 1980.

[12] Gregor Kiczales, Erik Hillsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William Griswold. Getting started with AspectJ. Communications of
the ACM, 44(10):59–65, October 2001.

[13] David Leon, Andy Podgurski, and Lee J. White. Multivariate visualiza-
tion in observation-based testing. In Proceedings of the 22nd Interna-
tional Conference on Software Engineering, pages 116–125. ACM Press,
November 2000.

[14] Martin Lippert and Cristina Videira Lopes. A study on exception detecton
and handling using aspect-oriented programming. In Proceedings of the
22nd International Conference on Software Engineering, pages 418–427.
ACM Press, 2000.

[15] Brian Marick. The Craft of Software Testing. Prentice Hall, Englewood
Cliffs, NJ, 1995.

[16] Andy Podgurski, Wassim Masri, Yolanda McCleese, and Francis G.
Wolff. Estimation of software reliability by stratified sampling. ACM
Transactions on Software Engineering and Methodology, 8(3):263–283,
July 1999.

[17] Helmuth Spath. Cluster Analysis Algorithms for Data Reduction and
Classification of Objects. Ellis Horwood Limited, Chichester, West Sus-
sex, England, 1980.

[18] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jRapture:
A capture/replay tool for observation-based testing. In Proceedings of the
International Symposium on Software Testing and Analysis, pages 158–
167, August 2000.

[19] Randy Jay Yarger, George Reese, and Tim King. MySQL and mSQL.
O’Reilly, 1999.

