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Abstract 
Microarray technology makes it possible to monitor simultaneously the expression patterns of 
thousands of genes during cell differentiation and response. Measurements of gene expression 
levels over time can provide valuable insight into protein function.In this report is described a 
two-step technique of clustering followed by learning Bayesian networks to: (1) cluster genes 
with similar expression patterns and characterize the functional characteristics of those clusters; 
and (2) prioritize genes within a cluster by importance in carrying out that cluster’s function(s). 
 
Background 
All cells in an organism contain the same genomic data, but their protein makeup can differ 
dramatically both temporally and spatially. The process of translating genomic data into proteins 
is called gene expression. Analysis of gene expression patterns is a valuable tool for making 
inferences about gene function and biological pathways. 
 
In the past several years, microarray technology has made it possible to monitor simultaneously 
the expression patterns of thousands of genes within a single organism during cell differentiation 
and response1. The output of a microarray experiment is a matrix in which rows are data for a 
gene and columns are observations during different conditions. Conditions can be consecutive 
time steps, thus making each row a time series. Typical experiments have anywhere from a 
dozen to over one-hundred observations for each gene. Each observation is a ratio of expression 
level versus control. Machine learning techniques are necessary to make sense of these massive 
datasets. 
 
Analysis of expression patterns has traditionally been done with clustering algorithms. It is 
assumed that genes whose proteins work together to carry out a function have related expression 
patterns. Genes with related expression patterns may have similar (gene i = gene j), proportional 
(gene i α gene j), or opposite (gene i -α gene j) expression profiles. For example, one gene’s 
protein may serve to increase or decrease expression of another gene. Techniques that are 
currently in use include: plotting expression time series and finding patterns by visual 
inspection2; hierarchical clustering techniques3,4; self-organizing maps (SOMs)5; and k-means6. 
If a cluster is enriched in genes with a particular function, it may be hypothesized that 
uncharacterized genes in that cluster also participate in the same function.  
 
The primary drawbacks of clustering algorithms in analyzing gene expression data are: (1) 
different distance metrics produce different clusters; and (2) clusters have no internal structure 
without doing further analysis. A biological relevant distance metric is still the topic of much 
debate. Choice of metric is complicated by the noisy nature of gene expression data. Complete 
pairwise correlations have been used in many studies. Their advantage is that they can detect 
pairs of genes with similar, proportional, or opposite expression profiles. However, correlations 
are sensitive to the choice of an arbitrary threshold and to noise. Euclidean distance tends to be 
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less sensitive to noise: two genes that exhibit poor pairwise correlation may still appear close by 
virtue of their correlation patterns with other genes.  
 
More recently, attempts have been made to use expression data to uncover the structure of 
cellular processes. Friedman et al. has developed a method of Bayesian clustering7 that has been 
used to identify genes whose proteins may be particularly important in carrying out a cellular 
function. It makes use of a heuristic called the Sparse Candidate algorithm8. It reduces the search 
space by identifying the best candidate parents for each node based on a statistical measure, and 
then restricting the search to networks in which only candidate variables can be parents. 
Dependencies are learned between genes that have related time series. Importance of these 
dependencies is ranked by order relations and Markov relations. Order relations rank genes by 
how often they appear as ancestors of other genes. Markov relations describe pairs of genes that 
often have arcs between them. 
 
Unfortunately, Friedman’s Bayesian clustering method is not fast enough to use with typical data 
sets containing thousands of genes. It would also be difficult to interpret the large and complex 
networks that would result. Therefore, I propose a two-step process that: (1) uses traditional 
clustering techniques to identify small groups of genes that may participate in a single cellular 
process; and (2) uses Friedman’s Bayesian clustering technique to identify genes that are 
particularly important in carrying out that function. 
 
Methods 
Data Set: 
A publicly available dataset was used that is described in Cho et al2 and is available from many 
sources, including the GeneSpring software demo package (http://www.sigenetics.com). Briefly, 
yeast cells were synchronized at the beginning of the cell cycle, and expression levels of 6457 
genes were monitored every 10 minutes for 160 minutes (about 2 cell cycles). The 90 minute 
expression levels were thrown out due to irregularities in expression monitoring. Duplicate 
observations were averaged. 
 
Expression levels were normalized by dividing each value by the median for that gene. All genes 
whose expression levels had a variance of less than 1.2 were thrown out, thus reducing the data 
set to 3029 genes with 16 observations each. Slopes of pairwise consecutive observations were 
added to account for offset but parallel patterns as described in Wen et al.3, thus resulting in a 
final dataset with 31 observations per gene. Code for performing these preprocessing steps can 
be found in Appendix I. 
 
Clustering: 
K-means clustering was carried out with the SOM Matlab toolbox 
(http://www.cis.hut.fi/projects/somtoolbox/). Clustering under a range of target clusters from 2-
50 was performed. Sum squared error and the Davies-Bouldin index were calculated for each 
target cluster size. The Davies-Bouldin index is a ratio of the sum squared error within clusters to 
the sum squared error between clusters. The best clusterings are those that minimize the Davies-
Bouldin index (i.e. those that minimize the sum square error within cluster and maximize the 
sum squared error between clusters). 
 



 3 

A technique described by Tavazoie et al.6 was then used to find clusters that are significantly 
enriched for genes with similar functions. Briefly, the genes in each cluster are mapped to the 
259 functional categories in the Munich Information Center for Protein Sequences (MIPS) 
Comprehensive Yeast Genome Database (CYGD) 
(http://mips.gsf.de/proj/yeast/CYGD/db/index.html). The hypergeometric distribution is then 
used obtain the statistical significance of that mapping. For this experiment, the mapping was 
done using SequenceUpToDate, a software package previously developed by the author for 
automated querying of online bioinformatics databases via HTTP. A module had to be written to 
support queries to the MIPS database (see Appendix II). For each cluster, P values were 
calculated for observing the frequencies of genes in particular functional categories. For 
calculating P, the hypergeometric distribution was used to obtain the probability of observing at 
least k genes from a functional category within a cluster of size n. The formula is given by: 
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where f is the number of functional categories in the genome, and g is the size of the genome. As 
259 MIPS functional categories were tested, P values less than 0.0002 were considered not 
significant, as their total expectation within the cluster would be higher than 0.05. Matlab’s 
statistics toolbox was used to perform this calculation. 
 
Structural Analysis of Clusters: 
Clusters that had one or more statistically significant functional enrichments were further 
analyzed using context-specific Bayesian clustering. Only the slope observations (columns 17-
31) were used. First, the slope values were discretized into three categories: -1, 0, and 1, 
depending on whether the slope value was increasing, flat, or decreasing. Second, Friedman’s 
Sparse Candidate algorithm was used to learn a network from the discretized slope data.  
It reduces the search space by identifying the best candidate parents Ci

n = {Y1, …, Yk} for each 
node X based on a statistical measure such as Euclidean distance, correlation, or mutual 
information, and then restricting the search to networks B in which only the candidate variables 
can be parents of X. Stopping criteria is based on a network scoring technique such as Minimum 
Description Length (MDL) in which the search stops when Score(Bn) = Score(Bn-1), or a 
candidate-based criterion in which Ci

n = Ci
n-1. To avoid being locked into prior candidate choices 

that were suboptimal in hindsight, an iterative algorithm was used to adapt candidate sets during 
search. To guarantee monotonic improvement in network score, the selected candidates for Xi’s 
parents is restricted to include Xi’s current parents (i.e. the selection must satisfy Ci

n ⊆  Ci
n+1). 

Iterations are stopped when the best score for the current iteration is no better than that for the 
previous iteration. An implementation of the Sparse Candidate algorithm called mrbn 0.2.0 was 
used (http://mrbn.dyndns.org/). It had to be modified to accept the format of this data set (see 
Appendix III). It uses mutual information for selecting candidate parents. A hill climbing search 
algorithm is used for searching. Minimum Description Length (MDL) scoring is used to stop the 
search. 
 
To aid in interpreting the induced networks, non-parametric bootstrapping7 was applied to 
compute confidence measures of features of the induced networks. All of the temporal 
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information on the gene expression data was discarded and each observation was treated as an 
independent sample. The following steps were then performed: 
 

•  For i = 1, 2, …, m 
o Resample, with replacement, N instances from D. Denote by Di the resulting 

dataset. 
o Apply the learning procedure on Di to induce a network structure ˆ G i = ˆ G Di( ) 

•  For each feature of interest, define 

pN
*,n f( )= 1

m
f ˆ G i( )

i=1

m

∑  

The value p is a measure of confidence in the feature of interest, and m is the number of 
resamplings. Features of interest were all arcs in the induced networks. From this confidence 
measure, a dominance score for all genes was calculated, which is defined as the sum of 
confidence measures for all outbound arcs emanating from a gene. Genes with high dominance 
scores were then interpreted as being highly important for the function of a cluster. Code for 
calculating the dominance score from mrbn’s output network can be found in Appendix IV. 
 
Results 
Clustering: 
The K-means technique was used to cluster the yeast gene expression data. K-means was 
performed repeatedly over a range of cluster numbers. The Davies-Bouldin index and sum 
squared error for each cluster number are plotted in Figure 1. The Davies-Bouldin index 
becomes asymptotic at about 30 clusters. A cluster number of 30 was chosen rather than a larger 
cluster number out of concern that the number of biologically relevant features in this data set 
that are discernable from gene expression data is probably less than 30. 
 

 
Figure 1: Davies-Bouldin index and Sum Square Error (SSE) for performing K-means 
clustering with a cluster number from 1 to 50 
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Out of the 30 clusters found by K-means, 21 were found to be significantly enriched for one or 
more MIPS database functional categories. Many of these clusters were either very small, thus 
containing low potential for discovery of new gene functionality, or very big, thus making it 
likely that the cluster did not have one primary function. Four of these clusters are plotted in 
Figures 2-5. The functional categories found for these four clusters are shown in Tables 1-4. 
These four clusters are representative of clusters that are most likely to have a single primary 
function and that are reasonably sized. 
 
There were 68 genes in cluster 9. Twenty-four genes were not classified or unknown to the 
database. Six significant functional categories were found. Cluster 9 appears to be classifiable as 
containing genes whose products are located in the nucleus and that are involved in DNA 
synthesis and replication, which is part of the mitotic cell cycle. 

 
Figure 2: Data from cluster 9 

 

Table 1: Significant functional classifications in cluster 9 

Function (# in genome) Number 
of genes 

P 

SUBCELLULAR LOCALISATION: nucleus (284) 21 <0.000001 

CELL CYCLE AND DNA PROCESSING: DNA processing: DNA synthesis and replication 
(49) 

15 <0.000001 

CELL CYCLE AND DNA PROCESSING: cell cycle: mitotic cell cycle and cell cycle control 
(144) 

11 <0.000001 

METABOLISM: nucleotide metabolism: deoxyribonucleotide metabolism (8) 4 <0.000001 

CELL CYCLE AND DNA PROCESSING: DNA processing: DNA recombination and DNA 
repair (45) 

6 0.000003 

CELL CYCLE AND DNA PROCESSING: cell cycle: mitotic cell cycle and cell cycle control: 2 0.000230 
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cell cycle checkpoints (12) 

 
There were 49 genes in cluster 10. Twenty-five were not classified or unknown to the database. 
Seven functional categories were significant. Cluster 10 appears to contain genes involved in 
pheromone response. 

 
Figure 3: Data from cluster 10 

 

Table 2 : Significant functional classifications in cluster 10 

Function (# in genome) Number of genes P 

CELL FATE: cell differentiation: fungal cell differentiation: pheromone response, 
mating-type determination, sex-specific proteins (66) 

7 <0.000001 

REGULATION OF / INTERACTION WITH CELLULAR ENVIRONMENT: cellular 
sensing and response: chemoperception and response: pheromone response 
(18) 

4 <0.000001 

CELL FATE: cell differentiation: fungal cell differentiation: budding, cell polarity 
and filament formation (84) 

6 0.000003 

CELL FATE: cell growth / morphogenesis: directional cell growth: other 
morphogenetic activities (6) 

2 0.000008 

CELL CYCLE AND DNA PROCESSING: cell cycle: cytokinesis (22) 3 0.000019 

CELLULAR COMMUNICATION/SIGNAL TRANSDUCTION MECHANISM: 
transmembrane signal transduction (2) 

1 0.000056 

SUBCELLULAR LOCALISATION: extracellular / secretion proteins (13) 2 0.000111 
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There were 258 genes in cluster 13. Ninety-three genes were not classified or unknown to the 
database. Ten functional categories were significant. Cluster 13 appears to contain cytoplasmic 
proteins that are involved in protein synthesis. 

 
Figure 4: Data from cluster 13 

 

Table 3: Significant functional classifications in cluster 13 

Function (#number in genome) Number of genes P 

SUBCELLULAR LOCALISATION: cytoplasm (239) 75 <0.000001 

PROTEIN SYNTHESIS: ribosome biogenesis (83) 56 <0.000001 

SUBCELLULAR LOCALISATION: nucleus: chromosome (23) 8 <0.000001 

METABOLISM: amino acid metabolism: amino acid degradation: degradation of 
amino acids of the cysteine-aromatic group: degradation of glycine (1) 

1 <0.000001 

PROTEIN SYNTHESIS: translation: initiation (1) 1 <0.000001 

CONTROL OF CELLULAR ORGANIZATION: Golgi (1) 1 <0.000001 

METABOLISM: amino acid metabolism: amino acid biosynthesis: biosynthesis 
of the cysteine-aromatic group (1) 

1 <0.000001 

PROTEIN SYNTHESIS: translation (23) 6 0.000021 

SUBCELLULAR LOCALISATION: nucleus (284) 25 0.000058 

TRANSCRIPTION(rRNA transcription: rRNA processing (19) 5 0.000067 

 

There were 360 genes in cluster 25. One-hundred thirty-six were not classified or unknown to the 
database. Twenty-three functional categories were significant. This cluster appears to be 
primarily involved in transcriptional control. 
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Table 4: Significant functional classifications in cluster 25 

Function (#number in genome) Number of genes P 

SUBCELLULAR LOCALISATION: nucleus (284) 58 <0.000001 

TRANSCRIPTION: mRNA transcription: mRNA synthesis: transcriptional control (139) 36 <0.000001 

CELL CYCLE AND DNA PROCESSING: cell cycle: mitotic cell cycle and cell cycle 
control (144) 

32 <0.000001 

METABOLISM: C-compound and carbohydrate metabolism: regulation of C-compound 
and carbohydrate utilization (40) 

12 <0.000001 

REGULATION OF / INTERACTION WITH CELLULAR ENVIRONMENT: ionic 
homeostasis: homeostasis of anions: homeostasis of sulfates (2) 

2 <0.000001 

TRANSPORT FACILITATION: transport mechanism: other transport mechanisms (1) 1 <0.000001 

CELL RESCUE, DEFENSE AND VIRULENCE: degradation of foreign: degradation of 
foreign (1) 

1 <0.000001 

PROTEIN FATE: protein modification: modification with sugar residues (1) 1 <0.000001 

TRANSPORT FACILITATION: peptide transporters (1) 1 <0.000001 

METABOLISM: amino acid metabolism: amino acid biosynthesis: biosynthesis of the 
aspartate family: biosynthesis of lysine (1) 

1 <0.000001 

METABOLISM: amino acid metabolism: amino acid biosynthesis (62) 14 0.000001 

SUBCELLULAR LOCALISATION: centrosome (22) 8 0.000001 

TRANSPORT FACILITATION: ion transporters: anion transporters (13) 6 0.000002 

CELL FATE: cell death (6) 4 0.000003 

TRANSCRIPTION: rRNA transcription: rRNA synthesis (11) 5 0.000010 

SUBCELLULAR LOCALISATION: endoplasmic reticulum (44) 10 0.000020 

TRANSCRIPTION: other transcription activities (23) 7 0.000020 

TRANSCRIPTION: rRNA transcription: rRNA processing (19) 6 0.000044 

TRANSCRIPTION(tRNA transcription: tRNA synthesis (5) 3 0.000045 

CELL FATE: cell aging (3) 2 0.000172 

CELL CYCLE AND DNA PROCESSING: other cell division and DNA synthesis activities 
(3) 

2 0.000172 

CELL FATE: cell differentiation: fungal cell differentiation: budding, cell polarity and 
filament formation (84) 

13 0.000195 

CELL FATE: cell differentiation: fungal cell differentiation: pheromone response, mating-
type determination, sex-specific proteins (66) 

11 0.000240 

 
Structural Analysis of Clusters: 
Clusters 9 and 10 were chosen for structural analysis. Context-specific Bayesian clustering is 
computationally intensive, and it was discovered that the cluster size had to be less than 100 
genes in order for the process to run to completion in a reasonable amount of time on modern 
desktop hardware. A 50-fold bootstrap was performed for each cluster. 
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Figure 5: Data from cluster 25 

 
The top ten dominance scores for cluster 9 are shown in Table 5. The highest scoring gene, 
YOR074C, encodes for thymidylate synthase, a protein that is required for the S-phase of the cell 
cycle, located in the nucleus, and is involved in DNA synthesis and replication. It is a member of 
the top two functional categories of cluster 9. 
 
The top ten dominance scores for cluster 10 are shown in Table 6. The highest scoring gene, 
YLR308W is classified as a sporulation and germination gene. This is consistent with this 
cluster’s primary function as determined by functional classification.

 

Table 5: Top 10 dominance scores for 
cluster 9 

Gene Dominance score 

YOR074C 2.82 

YPR121W 1.89 

YPR175W  1.74 

YPL256CW  1.24 

YNL300W  1.15 

YOR214C  0.90 

YOL007C  0.89 

YPR019W  0.80 

YNL289W  0.73 

YPL267W  0.71 

 

Table 6: Top 10 dominance scores for 
cluster 10 

Gene Dominance score 

YLR308W 3.17 

YML084W 2.99 

YER150w 2.93 

YHR125W 2.47 

YDL038c 2.24 

YDR258c 1.78 

YDR475C 1.73 

YDL037c 1.49 

YDL024c 0.98 

YDL021Wc 0.80 
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Conclusion: 
K-means clustering was used to find patterns in yeast cell cycle time series data, and 
examined the structure of these clusters using Bayesian learning to find important genes 
in those clusters. The functional scoring method appears to be useful in identifying 
statistically significant and interesting patterns in clusters. Clusters were isolated that 
appear to contain genes involved in DNA synthesis and replication, pheromone response, 
protein synthesis, and transcriptional control. In two of those clusters, genes were 
identified by dominance scores that may play important roles in those functions. A gene 
of unknown function with a high dominance score can be studied for its involvement in 
that cluster’s primary functionality. 
 
The Sparse Candidate Bayesian learning algorithm seems only appropriate for clusters 
under 100 genes in size when used on standard desktop hardware. Perhaps the algorithm 
can be used with larger clusters on more powerful machines. 
 
It would be interesting to test this approach’s usefulness to molecular biologists in 
guiding their research. 
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