
Linear Versus Non-Linear Learning in the Context of
Othello

Ali Alanjawi
Department of Computer Science, University of Pittsburgh

alanjawi@cs.pitt.edu

Abstract

Acquiring more knowledge renders the need for deep searching. How-
ever, knowledge is hard to measure. In this paper, Linearity is proposed
to measure the quality of knowledge. A comparison has been made
among three learning techniques, namely: linear regression, neural net-
work and support vector machine. These techniques were applied in the
domain of Othello.

1. Introduction

Many game-playing programs depend on brute-forced search to play in a master level.
However, search alone is not enough, since most games have exponentially growing
search space. Incorporating knowledge with search is shown to be effective by many re-
searchers [Berliner 1984; Schaeffer 2000]. One direction of the use of knowledge in
search is to predict the evaluation function by using machine learning methods. One tradi-
tional problem, may arise in this context, is the search-knowledge tradeoff. That is
whether to spend more efforts, and time, in computing the evaluation function, based on
prior knowledge, or in searching deeper in the game-tree. As quality of knowledge in-
creases, the need of deeper search to achieve a given performance decreases. Therefore,
knowing how much knowledge needed to search up to depth 9 for instance would have a
great value. The problem is, we do not know how to measure knowledge.

One possible way to estimate quality of knowledge is to use an expert; an expert could be
a human or a strong program as proposed by Junghanns and Schaeffer (1997). This solu-
tion is not feasible, since an expert is not always available even if it is a program.

Other potential solution to this problem is using the linearity of the evaluation function to
quantify the quality of knowledge. Linear functions are easy to learn and evaluate, giving
more time for the program to gain deep search, but may not have a great value of knowl-
edge. Whereas, nonlinear function need more time to learn and to evaluate, however, may

 2

captures more important knowledge, and hence gives more accurate evaluation, by their
complexity.

The problem of linearity is not a trivial one though. Researchers have different opinions.
Samuel (1967) suggested the use of nonlinear evaluation function in his checker program.
Lee and Mahajan (1988) interpreted the successes of their Othello program (BILL) as indi-
cation that a nonlinear evaluation function is better than linear evaluation function.

On the other hand, Buro (1995) has showed in his Othello program (LOGISTELLO) that
logistic regression obtains better results than a quadratic discriminant function. Tesauro
(1989) noted, in experimentation on his backgammon program, that a single-layer neural
network, which is linear, could outperform a nonlinear multi-layer neural network.

In this work we investigated the effect of linearity on the learning process; and examined
whether linearity can capture quality of knowledge. The next section describes the game
of Othello. Section 3 gives an overview of the learning techniques used. The main experi-
mental results are presented in section 4 and discussed in section 5.

2. The Game of Othello

Othello (also called Reversi) is an 8-by-8 board game. It is played by two players, and
each has either a black or white pieces to place on the board. Each of the two players tries
to flip his opponent’s pieces by placing them between two of his pieces in any line. The
player who cannot flip any of his opponents’ pieces must pass. The game end when both
players pass successively. The player who has more pieces at the end wins the game. Fig-
ure 1 shows the Othello initial position.

Figure 1 Othello initial board position.

 3

Othello is considered a tractable domain in AI by many researchers [Rosenbloom 1982,
Lee and Mahajan 1990, Moriarty and Miikkulainen 1994, Buro 1995]. Many programs
were developed to play the game; some of them were considered beyond the human mas-
ter level. The first noticeable program was Rosenbloom’s Iago (1982). Iago achieved a
world-championship level given the early-eighties hardware. Less than a decade later, Lee
and Mahajan revealed the curtain of their impressive program BILL [Lee and Mahajan
1990]. It achieved a straight win over Iago on a set of test games, and won a single game
against Brian Rose, the highest rated American Othello player at that time. In 1997,
LOGISTELLO [Buro 97] played an exhibition match against world champion Takeshi Mu-
rakami. LOGISTELLO won all six games against Murakami.

The key of success of the programs mentioned above, and any other strong programs, is
the use of deep search and extensive knowledge. Deep search can be attained by develop-
ing better search algorithms and by using heuristics to limit the scope of the search. On the
other hand, Knowledge is achieved by machine learning techniques. Some of these tech-
niques are summarized in the next section.

3. Learning Techniques

Human and machines are different in acquiring knowledge, however, they both obtain
knowledge by learning. Learning is the ability of using previous knowledge to adapt future
behavior. The problem with machine learning is that representation of knowledge must be
easy for machines to understand and to learn afterward. One way to overcome this prob-
lem is to quantify the knowledge; that is to assign numerical values for attributes that de-
scribe the domain of knowledge.

In this context learning can be achieved by finding an approximation function f that best
maps the quantified knowledge to numerical values that can facilitate feature behavior.
Therefore, the problem of machine learning boils down to an optimization problem. Many
techniques for finding function f do exist; some are linear such as linear regression, others
are nonlinear such as neural network1. These techniques, along with the support victor
machine, are discussed in the following sections.

3.1 Linear regression

Assume we have a training data D represented by pairs of inputs xi and outputs yi, <xi,yi> .
In the linear regression model we try to approximate the behavior of the training data by a
linear function f, i.e. a straight line. That is

f = wi . xi + b (1)

1 In this article we use “neural network” to implicitly mean multi-layer neural network, and use linear
regression to indicate a one layer neural network model, or perceptron.

 4

Where xi is the input vector of the training data, wi is vector of the weights of xi, and b is a
bias. Learning in linear regression involves choosing values for the weights wi. Moreover,
we try to choose values of wi that minimize the deviation of f from yi. The mean-square
error (MErr) is usually used to measure such deviation. MErr is given by:

MErr =
�

i (yi – f(xi))
2 (2)

One way for solving this optimization problem is to change the weights after each training
example according to the gradient descent rule2. The gradient descent rule is given as fol-
lows:

w=w – α∇w MErr i(w) (3)

Where α is the learning rate, and ∇w MErr is the change of error from previous example.
To obtain ∇w MErr, we compute the derivative of MErr; and the problem is reduced to
updating the weight vector according to the following equation:

w=w – α . (yi – f(xi ,w) . xi) (4)

3.2 Neural network

The idea of neural networks is firstly introduced by McCulloch and Pitts (1943). They
were inspired by the model of the human brain; and attempted to duplicate the behavior of
the brain on an abstract level.

A neural network consists of a set of units, links that connect one unit to another, and
weights associated with each link. Usually, neural networks are layered, i.e. units are or-
ganized into groups of layers, and links go from units to units in adjacent layers. There are
three types of layers: input, hidden and output layer. A neural network may consist of one
input layers, one output layers, and one or more hidden layers. Input layer is where the
units in the layer receive input from the training data. The units in the hidden layers receive
inputs via links from units in previous layer and send it to the units in next layer; whereas
the units, in the output layers, receive input from the units in last hidden layer and send
outputs out of the network. Figure 2 illustrate an example of a neural network used in our
experiments. The network consists of an input layer with 64 units, an output layer with
one unit, and two hidden layers that contain 50 and 10 units respectively.

2 Sometimes called the delta rule

 5

Figure 2 A neural network with two hidden layers.

Learning usually occurs by adjusting the weights on the links. Each unit has a set of
weighted inputs, an activation level, and a way of computing its activation level on the
next step. This is done by applying an activation function to the weighted sum of the unit's
inputs. Generally, the weighted sum (also called the input function) is strictly linear sum,
while the activation function may be nonlinear. If the value of the activation function is
above threshold, the node “fires,” i.e. sends an output to the linked unit.

The standard method for learning in neural networks is back-propagation [Bryson and Ho
1969]. The back-propagation algorithm employs the gradient decent rule, which is de-
scribed in section 3.1, to attempt to minimize the squared error between the network out-
put values. The weights are propagated through the network and adjusted according to
error difference. A detailed description of the algorithm can be found in [Mitchell1997].

3.3 Support vector machine

The Support Vector Machine (SVM) [Vapnik 1995] is a technique that allows us to ap-
proximate training data into a linear function within a given errorε. That is, to find a func-
tion f that has at most ε deviation from the actually obtained targets yi for all the training
data. Errors are negligible as long as they are less thanε, but will not accept any deviation
larger than this. Furthermore, we might relax this constrain by adding penalties for devia-
tions larger thanε. Hence, the problem reduced to optimizing the weights and the penalties
associated with errors larger thanε.

 6

Recall equation 1 in section 3.1; in SVM model we try to minimize ws as much as possible.
One way to insure this is to minimize the Euclidean norm, ||w||2.
Thus the optimization problem became as follows:

Where ξi refers to errors with deviation larger thanε, and C is a constant that determines
the cost, penalty, of having such errors. Figure 3 illustrate the idea graphically. Only the
points outside the shaded region contribute to the cost C, as deviations are penalized in a
linear fashion.

Figure 3 SVM model. εεεε is the width of allowed deviation, and ξξξξi is the penalized deviation. The
points on the gray area boundaries are called support vector points; the line inside the gray area

represents the model output.

Minimize ½ ||w||2 + C � i ξi

yi-wxi-b � ε +ξi

With constraint wxi+b-yi � ε + ξi

 ξi � 0

 7

To make SVM algorithm nonlinear, we simply preprocess the training examples, xi , by
mapping � :X � F into some feature space F, and then apply the standard SVM algorithm.

� is usually called Kernel function. In our experiments we use the Gaussian radial basis
kernel, which is defined as

4. Experimentation and Results

The previous section presented a brief description of three learning models. We use these
models to compare between linear and nonlinear models. In this section a description of
the experiment design and the results will be presented.

To apply machine learning techniques we need a large dataset on Othello domain. Fortu-
nately, many Othello games database do exist, and available on the internet. We choose to
use the well-known WTHOR database provided by the France Federation of Othello (FFO).
It is a huge data of Othello games, played in tournaments by master-level players since
1980. More than 69,000 games were recorded, which means more than 4,000,000 of
training instances. This database records the games in special binary files; thus it needs to
be translated to sets of attributes, or features.

We choose to translate the binary files into sets of primitive features, which represent the
pieces in the board. Each feature represents one of the 64 tiles of the Othello board. Then
each feature will be assigned a value according to the piece on it. For instance, black is -1,
white is 1 and empty is 0. Structural features are chosen because they are linear, and since
we want to measure linearity, we do not want to be biased by nonlinear complex features,
Another reason is that we do not want to push the nonlinearity to the features construc-
tion, as in kernel functions discussed in section 3.3; instead we want to measure the linear-
ity of the learning algorithm. The output of the game is represented by the disc difference
at the end of the game; therefore, each training example will have a value that signifies the
output of the game.

The three learning models described in section 3 has been implemented. For the linear re-
gression, we implemented the gradient descent algorithm for updating the weights. The
learning rate α has been adjusted by running the program many times and taking the best
results. In the neural network, back-propagation has been implemented. We implemented
two networks. Network 1 has one hidden layer with 50 units, and network 2 has two hid-
den layers with 50 and 10 units respectively.

The problem in building neural networks is deciding on the initial topology, e.g., how
many units there are and how they are connected. Genetic algorithms have been used to
explore this problem [Moriarty and Miikkulainen 1994], but it is a large search space and
this is a computationally intensive approach. We configure the topology of our networks

- � ||a-b||2

e

 8

by simple trail and error approach. For instance, we found that a 50 units’ layer is ideal for
one hidden layer for our training examples.

In general, if the number of hidden nodes is too large, the network may learn only the
training examples, while if the number is too small it may never converge on a set of
weights consistent with the training examples.

For the SVM model we used the SVM light [Joachims 1999]. The SVM light is a package
implements the Vapnik SVM algorithm, with some optimization that makes it possible to
be applied in large-scale problems. We created two SVM models using the SVM light: a
linear model, and an SVM model with a radial basis kernel.

A subset of 459,819 training example were drown from WTHOR. This subset was used to
train the learning models described above. After training, each model produces an evalua-
tion function. These evaluation functions were used, directly with no search, to play
against a base player. In our experiment we choose the base player to be an alpha-beta
search player with a depth of 6. The evaluation function of the alpha-beta search is simply
the number of discs in the board. Each model played a number of games against the base
player. To create different games, the first four moves were played, creating 244 different
board positions. We ran the experiment on a 1.5 GHz Windows machine with 256 MB of
RAM. The results of the games and the time spent in learning and evaluation is shown in
Table 1. Note that in the SVM models, the time of learning and evaluation have a large
magnitude in comparison with other models. That is due to the intensive IO operations
needed to use SVM light package.

Table 1. Learning models performance from 244 games against alpha-beta search at depth 6. Learn-
ing time is the whole time of training in seconds, where evaluation time is the time spent in each
move measured in nanoseconds.

 No. of wins No. of withdraws Learning time(s) Evaluation time(ns)

Linear regression 4 1 10 3.3

Neural Network 1 26 6 329 13.3

Neural Network 2 28 5 355 18.3

SVM –Linear 21 3 969 426.7

SVM –Radial 51 1 9673 456.7

 9

5. Discussion

Researchers have different point of view in linearity of the evaluation function. Some sug-
gest the use of linear functions, others argue with nonlinear functions. From the results of
this experiment, we would argue the use of nonlinear functions. Table 1 supports this ar-
gument, in which nonlinear models perform more than twice of the linear models. In par-
ticular, linear regression model perform poorly, and suggests not to be used in a rich do-
mains, such as Othello. One reason of such poor performance, whereas others found it a
good model, is the linearity of our features. Shifting the complexity from the learning
model to the feature construction is another way of raising the linearity of the learning
model. Figure 4 demonstrates a more clear view of the performance of the learning mod-
els.

The SVM model with radial kernel has the best performance among the other models. Al-
though, the SVM model is a linear model, the kernel makes it nonlinear. Applying kernel
functions to the features is another way of shifting the linearity to the feature construction.
This suggests that the feature construction has a crucial role in the performance. Note that
even without a kernel the SVM model outperform the linear regression one; signifying the
idea of having flexible linear model helps much.

Figure 4 Percentage of winning. The first column represents the linear regression model results.
SVM1 is the SVM linear model, NN1 is the first neural network with one hidden layer, NN2 is the sec-

ond neural network with two hidden layers, and SVM2 is the SVM model with the radial kernel.

 10

Other than the SVM models, the time needed for evaluation is relatively equivalent. The
learning time is differs much though. It is considerably fast to learn in linear models, and
thus suitable for real-time problems, where learning is done online. However, complex-
feature construction needs to be considered to achieve nonlinearity and getting a reason-
able performance.

In a previous experiment, a random player performance against the base player has been
tested. The random player won 6% of the time. Note that the linear regression model has
only 2% of wining against the base player, which give the intuition of avoiding the use of
linear regression in Othello, especially with the set of primitive features. On the other
hand, that suggests the other learning models were far away from random.

We constructed two neural networks; the results showed that the network with two hid-
den layers performs better than the one with one hidden layer. Thus, the more complex is
the model, the better performance. Therefore, we construct a third network with three
hidden layers to examine this argument. The performance of the third network remains the
same as the one with the two hidden layers. The complex models have boundaries on per-
formance, and may not capture further knowledge.

6. Conclusion

We compared the linear and nonlinear learning techniques. We found that the nonlinear
learning models acquired more knowledge than the linear models in the domain of Othello.
There is a remarkable difference between the two types of learning, suggesting the use of
linearity to measure quality of knowledge. The more complex the model, the more knowl-
edge it can extract from the domain, however, there is a bound that limit the performance
of the complex models. Feature construction has a major factor in the learning process.
Although, using complex hand-crafted features would shift the nonlinearity from the learn-
ing algorithm to the feature construction, the process of constructing features is a hard
task, and requires involvement of other expertise of the domain.

References

Berliner, H. (1984). Search vs. knowledge: an analysis from the domain of games. In
Elithorn A., and Banerji R. (Eds.), Artificial and human Intelligence, New York, NY: El-
sevier.

Bryson, A. and Ho, Y. (1969). Applied Optimal Control. Blaisdell, New York.

Buro, M. (1995). Statistical feature combination for the evaluation of game positions.
Journal of Artificial Intelligence Research, 3:373-382.

 11

Buro, M. (1997). The Othello match of the year: Takeshi Murakami vs. Logistello. Jour-
nal of the International Computer Chess Association, 20(3):189-193.

Joachims, T. (1999). Making large-scale SVM learning practical. Advances in Kernel
Methods – Support Vector Machining.

Junghanns, A., Schaeffer, J. (1997). Search versus knowledge in game-playing programs
revised. International Joint Conference on Artificial Intelligence. 692-697.

Lee, F, Mahajan, S. (1988). A pattern classification approach to evaluation function learn-
ing. Artificial Intelligence 36, 1-25.

Lee, F, Mahajan, S. (1990). The development of a world class Othello program. Artificial
Intelligence 43(1), 21-36.

McCulloch, J. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics.

Moriarty D. and Miikkulainen, R. (1994). Evolving neural networks to focus minimax
search. In Proceedings of 12th National Conference on Artificial Intelligence (AAAI-94),
pages 1371-1377.

Mitchell, T. (1997). Machine Learning. McGraw Hill.

Rosenbloom, P. (1982). A world-championship-level Othello program. Artificial Intelli-
gence, 19(3):279-320.

Samuel, A. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3(3):211-229.

Samuel, A. (1967). Some studies in machine learning using the game of checkers. ii - re-
cent progress. IBM Journal of Research and Development, 11(6):601-617.

Smola A. and Scholkpf, B. (1998). A tutorial on support vector regression. Neuro COLT
Technical report NC-TR-98-03. Royal Holloway College, University of London, UK.

Schaeffer, J. (2000). The games computers (and people) play. In M. V. Zelkowitz (Ed.),
Advances in Computers, Volume 50, pp. 189--266. Academic Press.

Tesauro, G. (1988). Connectionist learning of expert backgammon evaluations. In Pro-
ceedings of the 5th International Conference on Machine Learning, Ann Arbor, MI.. 200-
206.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of
the ACM, 38(3):58-68.

 12

Vapnik, N. (1995). The Nature of Statistical Learning Theory. Springer Verlag.

