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Binary classification

* Two classes Y = {0,1}

* Our goal is to learn to classify correctly two types of examples
— Class 0 — labeled as 0,
— Class 1 —labeled as 1

« We would like to learn f: X —{0,1}

» Zero-one error (loss) function

L f(x,w)# y,

0 f(x.W)=y,

* Error we would like to minimize: £ (Error (X, y))

Error (X, ;) ={

* First step: we need to devise a model of the function
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Evaluation of classifiers
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Evaluation

For any data set we use to test the classification model on we can
build a confusion matrix:

— Counts of examples with:
— class label @ ; that are classified with a label o,

target
wo=1 ow=0
a =1 140 17
predict
20 54
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Evaluation

For any data set we use to test the model we can build a

confusion matrix:

target
wo=1 ow=0
. a =1 17
predict
a =0 20
agreement
Error: ?
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Evaluation

For any data set we use to test the model we can build a

confusion matrix:
target

wo=1 ow=0
=1 0 17

(24
a =0 20 ]

predict
agreement

Error: =37/231
Accuracy = 1- Error = 194/231
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have

names:
target

o=1 ow=0
o =1 TP FP
FN TN

predict

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)
FN: False negative (a miss)
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Additional statistics

Sensitivity (recall) TP

Specificity
SPEC =N
TN + FP

» Positive predictive value (precision)

PPT = L
TP + FP
* Negative predictive value
NPV = —TN
TN + FN
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Binary classification: additional statistics

e Confusion matrix

target
1 0
predict 1 140 10 PPV=140/150
0 20 180 NPV =180/200
SENS=140/160 SPEC=180/190

Row and column quantities:
— Sensitivity (SENS)
— Specificity (SPEC)
— Positive predictive value (PPV)
— Negative predictive value (NPV)
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Binary decisions: Receiver Operating Curves

, o,
/ :
)‘C*
e Probabilities:
— SENS p(x>x*|xew,)
— SPEC px<x*|[xew)
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Receiver Operating Characteristic (ROC)

* ROC curve plots :
SN= p(x>x*|xew,) - S
l-SPZp(x>x*|xea)2)
for different x* e

SENS i
p(x>x*|xew,)

b 1_§PE% O;(xU; x*1 Xew)
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ROC curve

Case 1 «  Case 2 = Case3
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p(x>x*|xew)
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Receiver operating characteristic

ROC

— shows the discriminability between the two classes under
different decision biases

Decision bias

— can be changed using different loss function
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Back to classification models
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Discriminant functions

One way to represent a classifier is by using
— Discriminant functions
Works for binary and multi-way classification

Idea:
— For every class i = 0,1, ...k define a function g,(x)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g;(X)

So what happens with the input space? Assume a binary case.
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Discriminant functions
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Discriminant functions
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Discriminant functions
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Discriminant functions

Define decision boundary
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Quadratic decision boundary
Decision boundary
3
+
25
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Logistic regression model

* Defines a linear decision boundary
* Discriminant functions:

g,(x) = g(w'x) go(x) =1-g(w'x)
« where g(z)=1/(1+e7) -isalogistic function

f(xw) =g, (w'x)=g(w'x)

! w Logistic function

X, \VVJ\> z f S (x,w)
Jo w0
X

Input vector 2,
X ' t
X
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Logistic function
. 1
function )= —
£ = e

» s also referred to as a sigmoid function
» Replaces the threshold function with smooth switching
« takes a real number and outputs the number in the interval [0,1]
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Logistic regression model

* Discriminant functions:
g,(x) = g(w'x) go(x)=1-g(w'x)
* Values of discriminant functions vary in [0,1]
— Probabilistic interpretation

fxw)=p(y=1lw,x)=g(x)=g(W'x)

1
Wo
X, W, z z f p(y=1x,w)
w O
Xy
Input vector .
X ' ot
\_ Xd
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Logistic regression model. Decision boundary

* LR defines a linear decision boundary
Example: 2 classes (blue and red points)

Decision boundary
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Generative approach to classification

Idea:
1. Represent and learn the distribution p(X, )
2. Use it to define probabilistic discriminant functions

Eg g (x)=p(y=0[|x) g (x)=p(y=1|x)

Typical model p(x,y)=p(x|y)p(y)
« p(x|y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x|y=0) p(x|y=1)
« p(y) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

p(y=0)+py=0H=1
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Quadratic discriminant analysis (QDA)

Model:
* Class-conditional distributions
— multivariate normal distributions
x~N(p,,x,) for y=0
x~N(p,,x,) for y=1
Multivariate normal x ~ N (p,X)

p(x 1) = %exp{—l(x— ) E (x— u)}
(27)""? |z 2

« Priors on classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(y,0)=60"(1-0)"" y € 10,1}
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QDA
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2 Gaussian class-conditional densities

Class conditional densities
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QDA: Quadratic decision boundary
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Linear discriminant analysis (LDA)
* When covariances are the same ~ x ~ N(p,,X),y =0
X~ N(MI’Z)J Yy =1
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LDA: Linear decision boundary

Contours of class-conditional densities
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LDA: linear decision boundary

Decision boundary
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Logistic regression vs LDA

* Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices

x~N(u,,z2) for y=0
x~N(u,z) for y=1

 Two models are related !!!

— When we have 2 Gaussians with the same covariance
matrix the probability of y given x has the form of a
logistic regression model !!!

p(y=1x,p,p,,Z)=g(w'x)
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When is the logistic regression model correct?

* Members of the exponential family can be often more
naturally described as

f(x]|0,0)=h(x,9)exp {GX——A(G)}

a(e)

0 - A location parameter @ - A scale parameter

+ Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small network
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Linear units

Linear regression Logistic regression
F(x)=wx )= p(y=1]x,w)=gW'x)
1
M
2
X L J®
W,
X
: w, : w,
X, X,
Gradient u}}z)date: Gradient update:
w<—w+a2(yi —f(x;))x;  The same W(—W-I—OtZ(yi — f(X))X,
=1  — =
Online: W <—W +0((y —f(X))X Online: vy <— W+ a(y _f(x))x
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Gradient-based learning

* The same simple gradient update rule derived for both the
linear and logistic regression models

* Where the magic comes from?

* Under the log-likelihood measure the function models and the
models for the output selection fit together:
— Linear model + Gaussian noise = Gaussian nise
y=w'x+e¢
&~ N(0,0%)
— Logistic + Bernoulli

y ~ Bern(6)

Bernoulli trial

Lungh,

X

X2

0=p(y=1]|x)=g(w'x)

Xa
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Generalized linear models (GLIM)

Assumptions:
* The conditional mean (expectation) is: = f(w'x)
— f() isaresponse (or a link) function

» Output y is characterized by an exponential family distribution
withmean ;= f(w'x)

Examples:

— Linear model + Gaussian noise
y=w'x+& &~N(0,0°)
y~Nw'x,0%)

— Logistic + Bernoulli
y ~ Bern(8) ~ Bern(g(w 'x))

0=g(w'x)=
1+ e

T
WX
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Generalized linear models (GLMs)

* A canonical response functions /() :
— encoded in the distribution

p(X | 9, (P) = ]’l(x,(p)exp {%}

* Leads to a simple gradient form
* Example: Bernoulli distribution

pxlp)=p A=) = eXp{log(l ”ﬂ]xﬂog(l—ﬂ)}

y7; 1
0210 =
g[l—,uj # l1+e?

— Logistic function matches the Bernoulli
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Non-linear extension of logistic regression

* usc feature (basis) functions to model nonlinearities
* the same trick as used for the linear regression

Linear regression Logistic regression
m

FO=wt X w0 ()= g0r 3w, (0)

¢j (x) - anarbitrary function of x
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Regularization

Similarly to the linear regression we can penalize the logistic
regression or other GLM models for their complexity

— L1 (lasso) regularization penalty
— L2 (ridge) regularization penalty
» Typically: the optimization of weights w looks as follows
min Loss (D,w)+ Q(w)

w

fit | Complexity penalty |
* Loss (D,w) functions:

— Mean squared error
— Negative log-likelihood
 Regularization penalty Q(w): L1, L2 or a combination
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