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Binary classification

• Two classes
• Our goal is to learn to classify correctly two types of examples

– Class 0 – labeled as 0, 
– Class 1 – labeled as 1

• We would like to learn
• Zero-one error (loss) function

• Error we would like to minimize:
• First step: we need to devise a model of the function 
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Evaluation of classifiers

CS 2750 Machine Learning

Evaluation

For any data set we use to test the classification model on we can 
build a confusion matrix:
– Counts of examples with:
– class label          that are classified with a label
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Evaluation

For any data set we use to test the model we can build a 
confusion matrix:

Error: ?
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Evaluation

For any data set we use to test the model we can build a 
confusion matrix: 

Error: = 37/231
Accuracy = 1- Error = 194/231
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have 
names: 
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FP: False positive (false alarm)
TN: True negative (correct rejection)
FN: False negative (a miss)
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Additional statistics

• Sensitivity (recall)

• Specificity

• Positive predictive value (precision)

• Negative predictive value
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Binary classification: additional statistics

• Confusion matrix

Row and column quantities:
– Sensitivity (SENS)
– Specificity (SPEC)
– Positive predictive value (PPV)
– Negative predictive value (NPV)
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Binary decisions: Receiver Operating Curves

• Probabilities:
– SENS
– SPEC

)|*( 2ω∈> xxxp
)|*( 1ω∈< xxxp

-20 -15 -10 -5 0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

2ω1ω

*x



6

CS 2750 Machine Learning

Receiver Operating Characteristic (ROC)
• ROC curve plots :

1-SP=
for different x*
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ROC curve
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Receiver operating characteristic

• ROC 
– shows the discriminability between the two classes under 

different decision biases
• Decision bias 

– can be changed using different loss function

CS 2750 Machine Learning

Back to classification models
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Discriminant functions

• One way to represent a classifier is by using
– Discriminant functions

• Works for binary and multi-way classification

• Idea: 
– For every class i = 0,1, …k define a function

mapping
– When the decision on input x should be made choose the 

class with the highest value of

• So what happens with the input space?  Assume a binary case.  
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Discriminant functions
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Discriminant functions
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Discriminant functions
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Discriminant functions

• Define decision boundary 
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Logistic regression model

• Defines a linear decision boundary
• Discriminant functions:

• where
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Logistic function
function

• Is also referred to as a sigmoid function
• Replaces the threshold function with smooth switching 
• takes a real number and outputs the number in the interval [0,1]
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Logistic regression model

• Discriminant functions:

• Values of discriminant functions vary in [0,1]
– Probabilistic interpretation
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Logistic regression model.  Decision boundary

• LR defines a linear decision boundary
Example: 2 classes (blue and red points)
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Generative approach to classification

Idea: 
1. Represent and learn the distribution
2. Use it to define probabilistic discriminant functions

E.g. 

Typical model
• = Class-conditional distributions (densities)

binary classification:  two class-conditional distributions

• = Priors on classes  - probability of class y
binary classification: Bernoulli distribution
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Quadratic discriminant analysis (QDA)

Model:  
• Class-conditional distributions

– multivariate normal distributions

• Priors on classes  (class 0,1)
– Bernoulli distribution
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QDA
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2 Gaussian class-conditional densities

• . 
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QDA: Quadratic decision boundary
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Linear discriminant analysis (LDA)
• When covariances are the same 0,),(~ 0 =yN Σµx

1,),(~ 1 =yN Σµx
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LDA: Linear decision boundary

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Contours of class-conditional densities

CS 2750 Machine Learning

LDA: linear decision boundary
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Logistic regression vs LDA
• Two models with linear decision boundaries:

– Logistic regression
– Generative model with 2 Gaussians with the same 

covariance matrices

• Two models are related !!!
– When we have 2 Gaussians with the same covariance 

matrix the probability of y given x has the form of a 
logistic regression model !!!
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When is the logistic regression model correct?

• Members of the exponential family can be often more 
naturally described as 

• Claim: A logistic regression is a correct model when class 
conditional densities are from the same distribution in the 
exponential family and have the same scale factor

• Very powerful result !!!! 
– We can represent posteriors of many distributions with 

the same small network







 −

=
)(

)(exp),()|(
φ

θxθφφθ,x
a

Axhf
T

θ - A location parameter φ - A scale parameter

φ



18

CS 2750 Machine Learning

Linear units

Logistic regressionLinear regression
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Gradient-based learning

• The same simple gradient update rule derived for both the 
linear and logistic regression models

• Where the magic comes from? 
• Under the log-likelihood measure the function models and the 

models for the output selection fit together:
– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models (GLIM)
Assumptions:
• The conditional mean (expectation) is:

– is a response (or a link) function
• Output y is characterized by an exponential family distribution 

with mean
Examples:

– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models (GLMs)

• A canonical response functions          : 
– encoded in the distribution

• Leads to a simple gradient form
• Example:  Bernoulli distribution

– Logistic function matches the Bernoulli
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Non-linear extension of logistic regression

)()(
1

0 xx j

m

j
jwwf φ∑

=

+=

∑)(1 xφ

)(2 xφ

)( xmφ

1

1x

0w

1w
2w

mwdx

)(xjφ - an arbitrary function of x

• use feature (basis) functions to model nonlinearities
• the same trick as used for the linear regression
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Regularization

Similarly to the linear regression we can penalize the logistic 
regression or other GLM models for their complexity
– L1 (lasso) regularization penalty
– L2 (ridge) regularization penalty

• Typically: the optimization of weights w looks as follows

• functions:
– Mean squared error
– Negative log-likelihood

• Regularization penalty           :  L1, L2 or a combination
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