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Linear model

Loss (error) function based on the least squares fit
Parameter estimation.

Gradient methods.

On-line regression techniques.

Linear additive models

Statistical model of linear regression
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Supervised learning

Data: D={D,,D,,.,D,} asetof n examples
D, =<x,,y, >
X, =(X,,X,,,""X; 4) is an input vector of size d
V; s the desired output (given by a teacher)
Objective: learn the mapping [ : X =Y
st. y,= f(x;) forall i=1,..,n

* Regression: Y is continuous

Example: earnings, product orders — company stock price
* Classification: Y is discrete

Example: handwritten digit in binary form — digit label
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Linear regression

* Function f:X —Y isalinear combination of input
components

d
J(X)=w, +wx;, + WX, +..w,x, =w, + ZW_/-X_/-
j=1

Wy, Wy,... W, - parameters (weights)

Bias term —— 1

e X,

Input vector <

X °

X g
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Linear regression

* Shorter (vector) definition of the model

— Include bias constant in the input vector
x=(Lx,x,,x,)

F(X) = wyx, + WX, + Wox, +...w,x, =W’ X

Wy, Wi,... W, - parameters (weights)

Input vector <

X - Wy
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Linear regression. Error.

* Data: D =<x,y, >
* Function: x, = f(X,)
* We would like to have y.~ f(x,) forall i=1,.,n

e Error function

— measures how much our predictions deviate from the
desired answers

1
Mean-squared error J, = — Z (v, - f(x,))’
i=l,.n
* Learning:
We want to find the weights minimizing the error !
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Example

mear regression.

L

)

x =(x,

1 dimensional input
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CS 2750 Machine Learning

Example.

mear regression.

L

('xl > x2)

X =

* 2 dimensional input
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Linear regression. Optimization.

» We want the weights minimizing the error

Tt Y0 SR = YWk

i=l,..n i=l,..n

» For the optimal set of parameters, derivatives of the error with
respect to each parameter must be 0

0 23
WJ,,(W) = __z (Vi = WX g = WiX, ) =~ dei,d)xi,j =0

j i=1

e Vector of derivatives:

grad | (J,(W) =V, (J,(W) === (5, - w'x,)x, = 0

i=1
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Linear regression. Optimization.

e grad ,(J,(W)) = 0 defines a set of equations in w

0 2L
M‘]n(w):_;;();i_Woxi,O_Wlxi,l_"'_dei,d):O

0 2L

6_WIJ" (W)= _;; - WoXio = WX —-..— dei,d)xi,l =0
iJ (W)——%Zn:( — WX, g = WX, —...— W, X, )X, =0
awj n pa Vi 0Xi,0 1Xig T dXid )i,
iJ (w)——gzn:( — WX, g — WX, —..— W, X, )X, , =0
ow, n n e Vi 0Xi,0 1Xig T dXid ) Xid
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Solving linear regression

0
—J (W)=—— WoX, g =W, X, —.c.— W, X. )X, . =0
aWJ ( ) nlzl(y 0-%1,0 17,1 d 1,d) i,j

By rearranging the terms we get a system of linear equations
with d+/ unknowns
Aw=Db

n n n n n
WOwalﬁLWIZx,.,11+...+ijxi,j1+...+wd2xi’d1:Zyl.l
i=1 i=1
n n
WOin,Oxi,l_i_‘/Vlzxi,lxi,l—'—' W z 1] ll+ +Wdzxz dle Zyl 11
i=1 i=1

n n n
wOle o, +w12xl X .+wj2xi’jxi,j +.. .+wd2xi,dxl.,j = Zyix,.,j
i=1 i=1 i=1
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Solving linear regression

» The optimal set of weights satisfies:
Vo (W) =23 (- wTx)x, = 0
n -y

Leads to a system of linear equations (SLE) with d+/
unknowns of the form

/ Aw=Db
n

woz)c0 +wle1 . +qu X+ +wd2x,d =2
i=1 i=1

Solution to SLE: ?
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Solving linear regression

» The optimal set of weights satisfies:

Vo, W) =-23 (5, -w'x)x, =0

n oo
Leads to a system of linear equations (SLE) with d+/
unknowns of the form

n
Wole 0 +M}12x11 Tt W le J l J +.. +Wdle d zyixi,_/
i=1

i=1

Solution to SLE: _
w=Ab

e matrix inversion
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Gradient descent solution

Goal: the weight optimization in the linear regression model

J, = Error (w)——Z(yl f(xl.,w))2
i=1,.n
An alternative to SLE solution:
* Gradient descent
Idea:
— Adjust weights in the direction that improves the Error
— The gradient tells us what is the right direction

W<« w-—aV  Error,(w)

a >0 - alearning rate (scales the gradient changes)
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Gradient descent method

» Descend using the gradient information

Error (w) V . Error (w)]|,.

W —

Direction of the descent

» Change the value of w according to the gradient

W<« w-—aV_ Error (w)
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Gradient descent method

Error (w) iError (W) |«
ow

w* w

* New value of the parameter
W, w,; *—a iError (W) |, For all j
j
a > 0 - alearning rate (scales the gradient changes)
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Gradient descent method

* [Iteratively approaches the optimum of the Error function

Error(w)

I I I I
w (@3 (D, (2}, (3) w
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Online gradient algorithm

» The error function is defined for the whole dataset D

J, = Error (W)=~ Y (5, - £(x,, W)’

i=l,.n

* error for asample D =<x,y >

1
Jonline = EI”VOI"I.(W) = E(yl - f(xiaw))z
* Online gradient method: changes weights after every sample

0
w, < w;, —a——Error (w)
* vector form: ow j

W< w-—aV Error,(w)

a >0 . Learning rate that depends on the number of updates
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Online gradient method

Linear model f(x)=w'x
On-line error J ppiine = Error,(w) = E(yi ~ f(x,,w))’
On-line algorithm: generates a sequence of online updates
(i)-th update step with: D =<x,,y, >
j-th weight:
(1)

i . OFError .(w
Wj «— wj(t D a(l)a—l()|w“l)
w .

(0 IR =
w " e w T a(@i)(y, - f(x,wT)x

1
Fixed learning rate: «(i)=C Annealed learning rate: a(i)~-

- Use a small constant - Gradually rescales changes
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Online regression algorithm

Online-linear-regression (D, number of iterations)
Initialize weights W = (w,, w,,w, ... w,)
for i=1:1: number of iterations
do select a data point D, =(x,,y,) fromD
set learning rate ~ a(i)
update weight vector
w—w+a(i)(y, - f(x;, W)X,
end for

return weights W

* Advantages: very easy to implement, continuous data streams
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On-line learning. Example
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Practical concerns: Input normalization

* Input normalization

— makes the data vary roughly on the same scale.

— Can make a huge difference in on-line learning

Assume on-line update (delta) rule for two weights j,k,:

Wj(—Wj-I-

W, < w, +

a(i)(yi - f(Xz))

Change depends on

/ the magnitude of

a(i)(yi - f(xz))

the input

For inputs with a large magnitude the change in the weight is
huge: changes to the inputs with high magnitude
disproportional as if the input was more important
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Input normalization

* Input normalization:
— Solution to the problem of different scales
— Makes all inputs vary in the same range around 0

_ 1 2 1 —\2
X, == X% o =——=2 (x,;-%))
n i=1 n-— i=1

(xi,j _fj)

O

New input: X, ; =
J

More complex normalization approach can be applied
when we want to process data with correlations

Similarly we can renormalize outputs y
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Extensions of simple linear model

Replace inputs to linear units with feature (basis) functions
to model nonlinearities

£ = w0+ 2w, (%)

¢j (x) - anarbitrary function of x
1

The same techniques as before to learn the weights
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Additive linear models

* Models linear in the parameters we want to fit
S (x)=w, + Z W d (X)
k=1

Wy, Wi...W, - parameters
$,(x), 4,(x)...4, (X) - feature or basis functions
* Basis functions examples:
— a higher order polynomial, one-dimensional input x = (x,)
p(x)=x ¢,(x)=x" ¢(x)=x
— Multidimensional quadratic X = (x;, x,)
2
$(x) = x, 9, (x) = x| $5(x) = x, Py (x) = x22 Ps(X) = x,x,
— Other types of basis functions

¢, (x)=sin x ¢,(x)=cosx
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Fitting additive linear models

« Error function J,(W)=1/n) (y— f(x,))’

i=l,.n

Assume: (p(xi):(1a¢1(xi)’¢2(xi)a""¢m(xi))
—% S - f(3)e(x) =0

i=l,.n

v w J)‘I (W ) =
* Leads to a system of m linear equations
Wozlllciﬁj (X)) +... 4w, Zlklfj (X, (% )+, D 4, (%), (%) =D 3¢ (x)
i i= i=1 i=1

 Can be solved exactly like the linear case
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Example. Regression with polynomials.

Regression with polynomials of degree m

* Data points: pairs of < x,y >

* Feature functions: m feature functions
$.(x)=x' i=12,....,m

* Function to learn:

FCaW) =y + 3w (1) = wy + D
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Learning with feature functions

Function to learn: .
SGew) = wy+ 3w (x)
i=1
On line gradient update for the <x,y> pair
wy =wy +a(y—f(x,w))

w; =w; +a(y—f(xX,w))g,(x)

Gradient updates are of the same form as in the linear and logistic

regression models
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Example. Regression with polynomials.

Example: Regression with polynomials of degree m
S, W) =w, + Z w,p,(x) =w, + z Wixi
i=1 i=1

* On line update for <x,y> pair

wy = w, +a(y = f(x,w))

w,=w, +a(y— f(x,w)x’
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Multidimensional additive model example
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Multidimensional additive model example
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Statistical model of regression

e A generative model: y= f(x,w)+¢
S (x,w) isa deterministic function

£ 1s arandom noise , represents things we cannot capture
with f(x,w) ,e.g &~ N(0,oc?)

Assume f(x,w)=w’'x isalinear model, and &~ N(0,c?)
Then: f(x,w) = E(y|Xx) models the mean of outputs y for X
and the noise models deviations from the mean
* The model defines the conditional density of y given X,w,o

Py x,W,0) = m}ﬁexp[—zf?(y— f(x,w))z}
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ML estimation of the parameters

* likelihood of predictions = the probability of observing
outputs yin D given w, o
L(D,w,o)= H p(yi | X[’wao-)
i=1
* Maximum likelihood estimation of parameters
— parameters maximizing the likelihood of predictions
w’ = arg max H p(y,|x,,w,0)
w i=1
* Log-likelihood trick for the ML optimization
— Maximizing the log-likelihood is equivalent to
maximizing the likelihood
I(D,w,o0)=1log( L(D,w,o)) =log H p(y,|x,,w,o0)

i=1
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ML estimation of the parameters

* Using conditional density

Py Ix,W,0) = ngexp[ - 2;2 (= f(xW)?]

* We can rewrite the log-likelihood as

I(D,w,c)=log( L(D,w,o)) =log [[ p(y:|x,,w,0)

i=1

= Zn: log p(y,|x;,,w,0)= i {_ 1 2 (y; —f(Xi,W))z _C(O-)}

i-1 ol 20
1

_;20

3 Z (vi— f(x;,w)*+C(o)
i=1 )

Y
* Maximizing with regard to w, is equivalent to minimizing
squared error functions
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ML estimation of parameters

Criteria based on mean squares error function and the log
likelihood of the output are related

1
Jonline (yi’xi) = 202 log p(yz |Xi,W,(T)+C(O')

We know how to optimize parameters w
— the same approach as used for the least squares fit
But what is the ML estimate of the variance of the noise?

Maximize /(D,w,o ) with respect to variance
A 1 1 *
G’ = ;z (yz - f(xi’w ))2
i=1

= mean square prediction error for the best predictor
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Regularized linear regression

If the number of parameters is large relative to the number of
data points used to train the model, we face the threat of
overfit (generalization error of the model goes up)

The prediction accuracy can be often improved by setting
some coefficients to zero

— Increases the bias, reduces the variance of estimates
Solutions:

— Subset selection

— Ridge regression

— Lasso regression

— Principal component regression

Next: ridge regression




Ridge regression

Error function for the standard least squares estimates:

J,m =13 -w'x,)?

i=l,.n

We seek: w’ = arg min 1 D, -wix)?

i=l,.n
Ridge regression:

1
(W) == 3 = wix) + 2w

i=l,.n

Wh d
TP e 220

What does the new error function do?

Ridge regression

Standard regression:
1
Jn(w) = Z (yi - WTX;‘)Z
i=1,.n
Ridge regression:
1 2
J,(w)= ; z v - WTXi)2 + ﬂ'”W”

i=l,.n

d
2 . . .
||w || = E w.  penalizes non-zero weights with the cost
= proportional to 4 (a shrinkage coefficient)

If an input attribute x, has a small effect on improving the error
function it is “shut down” by the penalty term

Inclusion of a shrinkage penalty is often referred to as
regularization




Ridge regression

How to solve the least squares problem if the error function is
enriched by the regularization term A ||w || ?

Answer: The solution to the optimal set of weights w is obtained
again by solving a set of linear equation.

Standard linear regression:
2 n _
Vi, (w)) = _;Z v - WTXi)Xi =0

i=1

Solution: w* = (XTX)‘1 XTy
where X is an nxd matrix with rows corresponding to
examples and columns to inputs

Regularized linear regression:

w =+ X"X)"' X"y

Lasso regression

» Standard regression:

1

J,(wW)y=—=23 (y,-w'x,)’
i=1,.n
* Lasso regression:
1
J,(w)= ; Z v _WTXi)Z + ﬂ“”W”]
i=l,.n

d
w||l = Z | w; | penalizes non-zero weights with the cost
i=0

proportional to A

» Lasso regression is more aggressive than the ridge regression in
zeroing the weights

» Lasso + ridge regularization combined:
— Elastic net regularization




