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Outline

Outline:

* Density estimation: \/
— Maximum likelihood (ML)
— Bayesian parameter estimates

— MAP
* Bernoulli distribution. \/
* Binomial distribution \/
* Multinomial distribution \/
* Normal distribution \/

* Exponential family
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Exponential family

Exponential family:

* all probability mass / density functions that can be written in the
exponential normal form

Fxln) = %mh(x)exp [ (0]

. n a vector of natural (or canonical) parameters
1(x) a function referred to as a sufficient statistic

h(x)  a function of x (it is less important)

Z(n) a normalization constant (a partition function)

Z(m) = [ h(x)exp {n"1(x) }dx
Other common form:

F(x|m)=h(x)exp[n’t(x) - A(n)] log Z(n) = A(n)
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Exponential family: examples

¢ Bernoulli distribution
p(x|m)y=n"(1-m)~"

= exp {log[l dd jx—i— log(1 —72)}
-

= exp {log(l - ﬂ)}exp{log[l ad jx}
-7

* Exponential family

F(x M) = ——h(x)exp[n”1(x)]

Z(m)
* Parameters
n="? H(x)="7?
Z(m)="? h(x)="?
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Exponential family: examples

¢ Bernoulli distribution
px|ln)y=n"(1-7)"

= exp {log[l f” jx + log(1 - 72')}

= exp {log(l - ﬂ)}exp{log[l dd jx}
-

* Exponential family

Fx M) = ——h(x)exp[n7e(x)]

Z(m)
¢ Parameters 1
nzlogl_ﬁ (note 7r:1+e_77 ) £(X) = x
Z(n)=L=1+e” h(x) =1

1-7
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Exponential family: examples
* Univariate Gaussian distribution

1 1 ,
p(x|y,6)— O_mexp[ _—(x_/u) ]

20°

1 H ] I,
= —exp| — —log o |exp{—x — X
2 p( 207 g j p{az 20° }

* Exponential family

Fx M) = ——h(x)expln’1(x)]

Z(m)
* Parameters
n= 9 t(X) =7
Z(n)=? h(x)="?
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Exponential family: examples

¢ Univariate Gaussian distribution

p(x|p,0) = m}ﬁexp[ —M%(x )]

1 H H 1 2}
= —eXx —log o |exp{ —x — X
27 p( 20° 8 j p{az 20°

* Exponential family
/(x \n)—(—)h(X)eXp[n t(x)]
* Parameters ) s .
_| #/20 1(x){ }
" [—1/202} x’

7]
YA =eX
(m) p{ =

h(x) =1/27

2
m 1
—expl— L op(=2
} eXp{ 2 og( 772)}
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Exponential family
* Foriid samples, the likelihood of data is

P<D|n)—Hp(x In)—Hh(x yexp[nTe(x,) - 4(m)]
[H h(x,) }eXp{Z nTt(x[)—A(n)}
[Hh(x }exp{ (Z t(x[)j—nA(n)}

i=1

* Important:
— the dimensionality of the sufficient statistic remains the same
for different sample sizes (that is, different number of
examples in D)
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Exponential family
* The log likelihood of data is

I(D,n) = log{ﬁ h(xi)}eXp{nT[Zn’, t(xi)] - nA(n)}

i=1

- log[ﬁ h(xi)} v {n(z t(x»} - nA(m}

i=1

* Optimizing the loglikelihood

n

v, (D) = [z t(x[)J —nV,Am) =0

i=1

¢ For the ML estimate it must hold

v, 4(m) = %(Z t(x,-)j

i=1
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Exponential family
* Rewritting the gradient:
V,A() =V, log Z(n) =V, log [ h(x) exp {n'r(x) fdx
Jrx)n(x) exp {n7t(x)}dx
J.h(x) exp {nTt(x)}dx
V,4() = [ 1(x)h(x) exp {07 1(x) - A() }dx
V,Am) = E(¢(x))
* Result: E(t(x)) = l(i Z(Xi)j
n

i=1

V,4(n) =

* For the ML estimate the parameters 1M should be adjusted
such that the expectation of the statistic t(x) is equal to the
observed sample statistics
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Moments of the distribution

* For the exponential family

— The k-th moment of the statistic corresponds to the k-th
derivative of A4(M)

— If x is a component of t(x) then we get the moments of the
distribution by differentiating its corresponding natural

parameter
* Example: Bernoulli p(x|7) = exp {log(l dd ]x + log(1 - 7[)}
-
A(n) =log " L _ log(1+e”)
* Derivatives:
77
odm) _ 0 —log(l+e") = 1_ =
on on (1+e") (1+e™)
8A(n) o 1 (-1

on’ 877 (I1+e™)
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Conjugate priors
For any member of the exponential family

f(XIn)—ﬁh(X)GXP "t ]

there exists a prior:

pl2.v) =u(r.v)g)” explvn’y]
Such that for n examples, the posterior is

p(M D,y v) o g(m)™" GXP[ anZn: t(xl-)} + vxﬂ

i=1

Note that:

oo sl 5 )
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Conjugate priors
For any member of the exponential family

F(x|m) = ﬁ])h(x)exp [t ]

there exists a prior:

PO I%V) = uv)g()” explyn'y]
Such that for n examples, the posterior is

p(|D,y,v) e g(n)™" eXP{ HTHZ t(X,-)} +Vxﬂ

Prior corresponds to v observations with value Y.

P(D]n)= LZ(H)J Ull h(X,-)J eXPLn' LL f(Xi)JJ

i=1
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Nonparametric Methods

e Parametric distribution models are:

— restricted to specific forms, which may not always be
suitable;

— Example: modelling a multimodal distribution with a
single, unimodal model.

* Nonparametric approaches:

— make few assumptions about the overall shape of the
distribution being modelled.
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Nonparametric Methods

Histogram methods:

partition the data space into
distinct bins with widths A; and
count the number of
observations, n;, in each bin.

p = y
i NA,- 50 0.5 1
A =025
» Often, the same width is “
used for all bins, A ; = A. % 05 o
MP bins!

* A acts as a smoothing
parameter.
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Nonparametric Methods

* Assume observations drawn  [f the volume of R, V, is

from'a density p(x) a'md sufficiently small, p(x) is
consider a small region R approximately constant over
containing x such that R and
P = [ p(x)dx P=p(x)V
R

* The probability that K out of  Thus

N observations lie inside R p(x) = P
is Bin(K,N,P ) and if N is V
large
: oo K
K = NP PR =Ny
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Nonparametric Methods: kernel methods

Kernel Density Estimation:
Fix V, estimate K from the data. Let R be a hypercube
centred on X and define the kernel function (Parzen window)

k(x—xn]_ 1 |(x,-x,)|/h<1/2  i=1,..D
|-

0 otherwise
h
* It follows that .. " e
N —_ .. .... * ,.
« and hence K = Zl k(x hx”j o |,y
° '..

1 & 1 (x—x,
P 3 5
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Nonparametric Methods: smooth kernels

To avoid discontinuities in p(x)
because of sharp boundaries
use a smooth kernel, e.g. a

Gaussian - e
p(x) = N ZW sn 0.5 1
n=1 [ h=007 '
a 1 .
exp | IX=%nl” P .
2h2 0
0 0.5 1
* Any kernel such that S =02
~ s
— gt ]
kuy > 0, 0 ' — —
0 0.5 1
/k(u) du = 1 h acts as a smoother.
» will work.
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Nonparametric Methods: kNN estimation

Nearest Neighbour Density
Estimation:

fix K, estimate V from the
data. Consider a hyper-sphere
centred on X and let it grow to
a volume, V*, that includes K
of the given N data points.
Then

0 0.5 1
K acts as a smoother

NV* |t el
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Nonparametric vs Parametric Methods

Nonparametric models:

* More flexibility — no density model is needed

* But require storing the entire dataset

» and the computation is performed with all data examples.

Parametric models:
* Once fitted, only parameters need to be stored
» They are much more efficient in terms of computation

* But the model needs to be picked in advance
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» Given a data set with N, data points from class Cy
and > Ni =N

K-Nearest-Neighbours for Classification

, we have

p(x) =
* and correspondingly
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K-Nearest-Neighbours for Classification
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