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Outline

Outline:

* Density estimation:
— Maximum likelihood (ML)
— Bayesian parameter estimates
— MAP

* Bernoulli distribution

* Binomial distribution

¢ Multinomial distribution

* Normal distribution
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Density estimation

Density estimation: is an unsupervised learning
* Learn relations among attributes in the data

Data: D={D,D,,..,D,}
D, =x; avector of attribute values
Attributes:

* modeled by random variables X={X,,X,,...,X,} with
— Continuous or discrete valued variables

Density estimation attempts to learn the underlying
probability distribution: p(X)=p(X,,X,,....X,)
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Density estimation
Data: p=(p,D,,.D,}

D, =x, a vector of attribute values

Objective: estimate the underlying probability distribution over
variables X , p(X), using examples in D

true distribution n samples es‘fimate
p(X) D={D,,D,,..D,} I P(X)

Standard (iid) assumptions: Samples
+ are independent of each other
* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ®
p(X|©)

* Example: mean and covariances of a multivariate normal

* Estimation: find parameters ® describing data D

Non-parametric

* The model of the distribution utilizes all examples in D

» Asif all examples were parameters of the distribution

+ Examples: Nearest-neighbor

CS 2750 Machine Learning

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
» A set of random variables X={X,,X,,....,X,}
* A model of the distribution over variables in X
with parameters @ : p(X|0)

e Data D={D,D,,.,D,}

Objective: find parameters @ such that p(X|®) fits data D
the best
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Parameter estimation

¢ Maximum likelihood (ML)
maximize p(D|0,<)
— yields: one set of parameters ®,
— the target distribution is approximated as:
p(X)=p(X|0,,)

* Bayesian parameter estimation

— uses the posterior distribution over possible parameters

(O] D.E) = p(D10,5)p©]s)
p(D <)

— Yields: all possible settings of ® (and their “weights™)

— The target distribution is approximated as:
P(X) = p(X|D) = [ p(X |©)p(®]|D,£)d®
o
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Parameter estimation

Other possible criteria:
* Maximum a posteriori probability (MAP)
maximize p(®|D,<&) (mode of the posterior)
— Yields: one set of parameters @M AP
— Approximation:
p(X)=p(X|0,,,)
* Expected value of the parameter
0= E(©) (mean of the posterior)
— Expectation taken with regard to posterior p(® | D,&)
— Yields: one set of parameters

— Approximation:
p(X) = p(X]0)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x, such that
* head x =1
* tail X, = 0

Model: probability of ahead @
probability of a tail 1-0)
Objective:
We would like to estimate the probability of a head 6
from data
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Parameter estimation. Example.

* Assume the unknown and possibly biased coin
« Probability of the head is 6@
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your estimate of the probability of a head ?

0 =2
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Parameter estimation. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate
7=2_0s
25
This is the maximum likelihood estimate of the parameter €
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Probability of an outcome

Data: D asequence of outcomes X; such that
* head x, =1
. tail %, =0
Model: probability of a head €
probability of a tail ~ (1-6)

Assume: we know the probability 6
Probability of an outcome of a coin flip x,

P(x,|0)=0"(1-0)"" <= Bernoulli distribution

— Combines the probability of a head and a tail

— So that x, is going to pick its correct probability
— Gives @ for x, =1

— Gives (1-6) for x, =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
* tail x, =0
Model: probability of ahead @
probability of a tail ~ (1-6)
Assume: a sequence of independent coin flips

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|68)="?
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

. tail X =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|0)=060(-0)0(1-0)0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

* tail x, =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D= 110101

What is the probability of observing a data sequence D:

P(D|6)=00(1-0)0(1-0)0

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
. tail % =0
Model: probability of ahead @
probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|60)=600(1-6)0(1-6)0
6
PD|O) =[]0 "1-0)"
i=1

Can be rewritten using_the Bernoulli distribution:
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The goodness of fit to the data

Learning: we do not know the value of the parameter &
Our learning goal:

* Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelithood

PDIO)=]]O"(1-6)""
i=1

Intuition:
» more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data

fit :
Error (D,0)=—-P(D |0)
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Example: Bernoulli distribution

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x, such that
* head x =1
s tail x,=0
Model: probability of ahead €
probability of a tail ~ (1-6)
Objective:
We would like to estimate the probability of a head )

Probability of an outcome X,
P(x,10)=60"(1-0)"" Bernoulli distribution
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Maximum likelihood (ML) estimate.
Likelihood of data: n
P(D|0,5)=]]o"(1-6)""
Maximum likelihood estimate -

0,, =argmax P(D|0,¢)
Optimize log-likelihoodg (the same as maximizing likelihood)

I(D,e) = IOgP(D | H,é:) = IOgHQX,- (1_9)(1—xi) _

n i=l 5 n
D x,logf+(1—x,)logl—6) =logf>_x, +log1-6)> (1-x,)
i=l1 i=1

i=1

N, - number of heads seen N, - number of tails seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0)=N,logf+N,log(1-0)
Set derivative to zero
ol(D,0) _ﬁ_L_
06 0 (1-6)

Solving 0=

ML Solution: 0,, = N _ N
N
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Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is 6
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of head and tail ?

Head: HML=ﬂ=L=£=O6
N N +N, 25

Tail: (1—¢9ML)=£=L=&=04
N N +N, 25
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Maximum a posteriori estimate

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

O,p = arg ;naxp(@ | D,&)
Likelihood of data \

e

~ prior

(via Bayes rule)

Normalizing factor

P(D|0,5)=]]o"(1-6)"""=0""(1-0)"
i=1

p(@|&) - is the prior probability on €

How to choose the prior probability?
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Prior distribution

Choice of prior: Beta distribution
(e, +a,)
()N ()
I'(x) - aGamma function I'(x)=(x-DI(x-1)
For integer values of x TI'(n)=(n—-1)!

p(01g) = Beta(0| o, @,) = 0“7 (1-0)"

Why to use Beta distribution?
Beta distribution “fits” Bernoulli trials - conjugate choices
P(D|60,5)=0"(1-0)"

Posterior distribution is again a Beta distribution
P(D|6,&)Beta(@ | a,,a,)

p@|D,g)= P(D| &)

= Beta(@|a,+ N,,a, + N,)
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Beta distribution

3

a=101
b=01

05 1

(5]

0.5

13

p(@|&) = Beta(0|a,b) =

0

0.5 1 0

I'a+

T

I'(a)

05 i

b) 9! (1- H)b—l

()
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Posterior distribution

3
~| prior likelihood function
P Beta
1 *
0 0
0 0.5 1 0 0.5
) . "
posterlor
1 Beta
0
0 0.5 1
7
P(D|68,&)Beta(0
p(0|D,5) = LL10:0)Betal01a.a) _ g g1 g 4N o, + W)

P(D|S)
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Maximum a posterior probability

Maximum a posteriori estimate
— Selects the mode of the posterior distribution

P(D|0,&)Beta(@ | a,,a,)
P(D|[$)

_ I'(e;+a,+N,+N,)

 T(a, + N)I(a, + N,)

p@[D,5) =

=Beta(d|a, + N,,a, + N,)

0N1+a1—1 (1 _ 9)N2+a2—1

Notice that parameters of the prior
act like counts of heads and tails
(sometimes they are also referred to as prior counts)

a,+N, -1
o, +o,+N +N,-2

MAP Solution:

HMAP -
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MAP estimate example

Assume the unknown and possibly biased coin
Probability of the head is 6
Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
e Assume p(@|¢&) = Beta(d|5,5)

What is the MAP estimate?
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MAP estimate example

* Assume the unknown and possibly biased coin

« Probability of the head is €

* Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10

e Assume p(@]|¢&)=Beta(0]5.5)

What is the MAP estimate ?

N, +a, -1 N, +a, -1 19
Orap = = =—
N-2 N, +N,+a +a,-2 33
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MAP estimate example

* Note that the prior and data fit (data likelihood) are combined

* The MAP can be biased with large prior counts

* Itis hard to overturn it with a smaller sample size

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT

— Heads: 15
— Tails: 10
e Assume
19
p(@| &) = Beta(8]5,5) 0,p = =
19
p(0&) = Beta(6|5,20) Orir =40
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Bayesian framework

Both ML or MAP estimates pick one value of the parameter

* Assume: there are two different parameter settings that are
close in terms of their probability values. Using only one of
them may introduce a strong bias, if we use them, for
example, for predictions.

Bayesian parameter estimate

— Remedies the limitation of one choice

— Keeps all possible parameter values

— Where p(@|D,S) =~ Beta(@|a, + N,a, + N,)
* The posterior can be used to define p(A4|D):

p(4|D)=[ p(4|©)p(® | D,£)dO
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Bayesian framework

* Predictive probability of an outcome x=1 in the next trial
P(x=1[D,3)

Posterior density

1 ———
P(x=1|D,&)=[P(x=1]6,&)p(0| D,&)d6
0

=[(©01D.£)d0 = E®)

* Equivalent to the expected value of the parameter
— expectation is taken with respect to the posterior distribution

p(0|D,g) = Beta(@|a, + Ny,a, + N,)
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Expected value of the parameter

How to obtain the expected value?

| (o D +1m,)
E(@)=|6OBeta(0|n,,n,)do = o0 ) gn-l (1_0),72,1d0
! o ! ()T (n7,)

— F(771 +772) j‘em (1_0 ﬂz—ldg
L()I(1,) 5

_ TG +m,) Tp +DI(,) |
=TTy Tn ) | P+ 17)d0

__ 1
n+mn,
Note: I(a+1)=al(a) for integer values of «
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Expected value of the parameter

* Substituting the results for the posterior:

p(0|D,g)=Beta(@|a, + Ny,a, + N,)

o, +N,
o, +N,+a, +N,

* We get E@®)=

* Note that the mean of the posterior is yet another
“reasonable” parameter choice:

0=E©)
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Binomial distribution

Example problem: a biased coin
Outcomes: two possible values -- head or tail
Data: a set of order-independent outcomes for N trials

N, - number of heads seen N, - number of tails seen
can be calculated from the trial data !!!

Model: probability of a head @
probability of a tail (1—6)
Probability of an outcome

P(N|N6’)—(N
TN

1

}9 M(1-6)"""" Binomial distribution

Objective:
We would like to estimate the probability of a head )
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Binomial distribution

Binomial distribution:

0.3

02}
Bin(m|10, 0.25)

0.1
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Maximum likelihood (ML) estimate.

Likelihood of data:

N N N
P(D|6‘)=(N }9 1-0)" =

1

N!

N,IN,!

0V (1-6)":

Log-likelihood

I(D,0)=1o N 0" (1-6)" =1lo N + N, logé+ N, log(1-6)
> N g NIN,! 1 108 108
J——

Constant from the point of optimization !!!

ML Solution: ¢ -N__ M
N N, +N,

The same as for Bernoulli and D with iid sequence of examples
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Posterior density

Posterior density

P(D|@6, 0
p@|D,5)= ( lP(g)é; ) (via Bayes rule)

Prior choice

IN'a, +a,)
018) = Beta (O | a,.a,) = 1T %)
p(@|¢)=Beta(0|ay,a,) ['(a)(a,)
Likelihood (N, +N,)

PRI = v rav,)

00{1 -1 (1 _ 9)&2—1
(1-)"

Posterior  p(6|D,&) = Beta(a, + N,,a, + N,)

MAP estimate 0,,,, =argmax p(@|D,&)
‘o, + N, -1
a,+a,+N, +N,-2

eMAP -
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Expected value of the parameter

The result is the same as for Bernoulli distribution

n+mn,

Expected value of the parameter

1
E(0) = [0Beta(0 | 1,.1,)d0 =—"—
0

a4 +N

E0)=
o, +N,+a, +N,

Predictive probability of event x=1
o, + N,

P(x=1|0,5)=E0) =
(x 16,5) @ a,+N,+a, +N,
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